Suppr超能文献

全基因组关联研究和遗传相关性扫描为英国生物银行队列中睡眠健康评分的遗传结构提供了见解。

Genome-Wide Association Study and Genetic Correlation Scan Provide Insights into Its Genetic Architecture of Sleep Health Score in the UK Biobank Cohort.

作者信息

Yao Yao, Jia Yumeng, Wen Yan, Cheng Bolun, Cheng Shiqiang, Liu Li, Yang Xuena, Meng Peilin, Chen Yujing, Li Chun'e, Zhang Jingxi, Zhang Zhen, Pan Chuyu, Zhang Huijie, Wu Cuiyan, Wang Xi, Ning Yujie, Wang Sen, Zhang Feng

机构信息

Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.

出版信息

Nat Sci Sleep. 2022 Jan 6;14:1-12. doi: 10.2147/NSS.S326818. eCollection 2022.

Abstract

PURPOSE

Most previous genetic studies of sleep behaviors were conducted individually, without comprehensive consideration of the complexity of various sleep behaviors. Our aim is to identify the genetic architecture and potential biomarker of the sleep health score, which more powerfully represents overall sleep traits.

PATIENTS AND METHODS

We conducted a genome-wide association study (GWAS) of sleep health score (overall assessment of sleep duration, snoring, insomnia, chronotype, and daytime dozing) using 336,463 participants from the UK Biobank. Proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) were then performed to identify candidate genes at the protein and mRNA level, respectively. We finally used linkage disequilibrium score regression (LDSC) to estimate the genetic correlations between sleep health score and other functionally relevance traits.

RESULTS

GWAS identified multiple variants near known candidate genes associated with sleep health score, such as and ( = 0.0146) and ( = 0.0236) were identified associated with sleep health score by PWAS. TWAS identified ( = 0.0212) and ( = 0.0349) considering mRNA expression level. LDSC found significant genetic correlations of sleep health score with 3 sleep behaviors (including insomnia, snoring, dozing), 4 psychiatry disorders (major depressive disorder, attention deficit/hyperactivity disorder, schizophrenia, autism spectrum disorder), and 9 plasma protein (such as Stabilin-1, Stromelysin-2, Cytochrome c) (all LDSC < 0.05).

CONCLUSION

Our results advance the comprehensive understanding of the aetiology and genetic architecture of the sleep health score, refine the understanding of the relationship of sleep health score with other traits and diseases, and may serve as potential targets for future mechanistic studies of sleep phenotype.

摘要

目的

以往大多数关于睡眠行为的基因研究都是单独进行的,没有全面考虑各种睡眠行为的复杂性。我们的目的是确定睡眠健康评分的遗传结构和潜在生物标志物,该评分能更有力地代表整体睡眠特征。

患者与方法

我们对来自英国生物银行的336,463名参与者进行了睡眠健康评分(对睡眠时间、打鼾、失眠、昼夜节律类型和日间嗜睡的综合评估)的全基因组关联研究(GWAS)。然后进行了蛋白质组全关联研究(PWAS)和转录组全关联研究(TWAS),分别在蛋白质和mRNA水平上鉴定候选基因。我们最终使用连锁不平衡评分回归(LDSC)来估计睡眠健康评分与其他功能相关性状之间的遗传相关性。

结果

GWAS在已知与睡眠健康评分相关的候选基因附近鉴定出多个变异,例如 和 (P = 0.0146)以及 (P = 0.0236)通过PWAS被鉴定为与睡眠健康评分相关。考虑到mRNA表达水平,TWAS鉴定出 (P = 0.0212)和 (P = 0.0349)。LDSC发现睡眠健康评分与3种睡眠行为(包括失眠、打鼾、嗜睡)、4种精神疾病(重度抑郁症、注意力缺陷多动障碍、精神分裂症、自闭症谱系障碍)和9种血浆蛋白(如稳定素-1、基质金属蛋白酶-2、细胞色素c)存在显著遗传相关性(所有LDSC P < 0.05)。

结论

我们的结果推进了对睡眠健康评分病因和遗传结构的全面理解,细化了对睡眠健康评分与其他性状和疾病关系的认识,并可能作为未来睡眠表型机制研究的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c467/8747788/c26c1b411c41/NSS-14-1-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验