文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RNA-Seq 探索基于一体化纳米气泡的氧增强声动力学疗法增强铁死亡治疗 HCC 的机制。

RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC.

机构信息

Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.

School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, People's Republic of China.

出版信息

Int J Nanomedicine. 2022 Jan 7;17:105-123. doi: 10.2147/IJN.S343361. eCollection 2022.


DOI:10.2147/IJN.S343361
PMID:35027829
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8752973/
Abstract

BACKGROUND: The combination of sonodynamic therapy and oxygenation strategy is widely used in cancer treatment. However, due to the complexity, heterogeneity and irreversible hypoxic environment produced by hepatocellular carcinoma (HCC) tissues, oxygen-enhancing sonodynamic therapy (SDT) has failed to achieve the desired results. With the emergence of ferroptosis with reactive oxygen species (ROS) cytotoxicity, this novel cell death method has attracted widespread attention. METHODS: In this study, nanobubbles (NBs) were connected with the sonosensitizer Indocyanine green (ICG) to construct a 2-in-1 nanoplatform loaded with RAS-selective lethal (RSL3, ferroptosis promoter) (RSL3@O2-ICG NBs), combined with oxygen-enhanced SDT and potent ferroptosis. In addition, nanobubbles (NBs) combined with low-frequency ultrasound (LFUS) are called ultrasound-targeted nanobubble destruction (UTND) to ensure specific drug release and improve safety. RESULTS: MDA/GSH and other related experimental results show that RSL3@O2-ICG NBs can enhance SDT and ferroptosis. Through RNA sequencing (RNA-seq), the differential expression of LncRNA and mRNA before and after synergistic treatment was identified, and then GO and KEGG pathways were used to enrich and analyze target genes and pathways related ferroptosis sensitivity. We found that they were significantly enriched in the ferroptosis-related pathway MAPK cascade and cell proliferation. Then, we searched for the expression of differentially expressed genes in the TCGA Hepatocellular carcinoma cohort. At the same time, we evaluated the proportion of immune cell infiltration and the identification of co-expression network modules and related prognostic analysis. We found that it was significantly related to the tumor microenvironment of hepatocellular carcinoma. The prognostic risk genes "SLC37A2" and "ITGB7" may represent new hepatocellular carcinoma ferroptosis-inducing markers and have guiding significance for treating hepatocellular carcinoma. CONCLUSION: The therapeutic effect of the in vitro synergistic treatment has been proven to be significant, revealing the prospect of 2-in-1 nanobubbles combined with SDT and ferroptosis in treating HCC.

摘要

背景:声动力学疗法与氧合策略的联合应用广泛应用于癌症治疗中。然而,由于肝癌(HCC)组织的复杂性、异质性和不可逆转的缺氧环境,增强氧的声动力学疗法(SDT)未能达到预期的效果。随着具有活性氧(ROS)细胞毒性的铁死亡的出现,这种新的细胞死亡方法引起了广泛的关注。

方法:在这项研究中,纳米气泡(NBs)与声敏剂吲哚菁绿(ICG)相连,构建了一种负载 RAS 选择性致死(RSL3,铁死亡促进剂)(RSL3@O2-ICG NBs)的 2-in-1 纳米平台,结合增强氧的 SDT 和强大的铁死亡。此外,纳米气泡(NBs)与低频超声(LFUS)结合称为超声靶向纳米气泡破坏(UTND),以确保特定药物的释放并提高安全性。

结果:MDA/GSH 等相关实验结果表明,RSL3@O2-ICG NBs 可增强 SDT 和铁死亡。通过 RNA 测序(RNA-seq),鉴定了协同治疗前后 LncRNA 和 mRNA 的差异表达,然后使用 GO 和 KEGG 途径对与铁死亡敏感性相关的靶基因和途径进行富集和分析。我们发现它们在铁死亡相关途径 MAPK 级联和细胞增殖中显著富集。然后,我们在 TCGA 肝癌队列中搜索差异表达基因的表达。同时,我们评估了免疫细胞浸润的比例,识别共表达网络模块并进行相关的预后分析。我们发现它与肝癌的肿瘤微环境显著相关。预后风险基因“ SLC37A2”和“ ITGB7”可能代表新的肝癌铁死亡诱导标志物,对治疗肝癌具有指导意义。

结论:体外协同治疗的疗效已被证明是显著的,揭示了 2-in-1 纳米气泡与 SDT 和铁死亡联合治疗 HCC 的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/6431ae4d600e/IJN-17-105-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/ceb8d41f5756/IJN-17-105-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/9002f61bfabb/IJN-17-105-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/34e10512b312/IJN-17-105-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/549e56190ea6/IJN-17-105-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/da7095e59ba9/IJN-17-105-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/17f1e3f20c25/IJN-17-105-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/8f4db0dab4e9/IJN-17-105-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/b7f3e9715c64/IJN-17-105-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/6431ae4d600e/IJN-17-105-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/ceb8d41f5756/IJN-17-105-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/9002f61bfabb/IJN-17-105-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/34e10512b312/IJN-17-105-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/549e56190ea6/IJN-17-105-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/da7095e59ba9/IJN-17-105-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/17f1e3f20c25/IJN-17-105-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/8f4db0dab4e9/IJN-17-105-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/b7f3e9715c64/IJN-17-105-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/8752973/6431ae4d600e/IJN-17-105-g0009.jpg

相似文献

[1]
RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC.

Int J Nanomedicine. 2022

[2]
Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma.

Int J Nanomedicine. 2023

[3]
Sono-Immunotherapy Mediated Controllable Composite Nano Fluorescent Probes Reprogram the Immune Microenvironment of Hepatocellular Carcinoma.

Int J Nanomedicine. 2023

[4]
Oxygen-sufficient lipid nanobubbles combined with UTMD for enhanced sonodynamic therapy of Hep-G2 cells.

J Biomed Mater Res B Appl Biomater. 2021-11

[5]
RNA-Seq Technology Reveals the Mechanism of SDT Combined With Novel Nanobubbles Against HCC.

Front Mol Biosci. 2022-2-7

[6]
Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors.

Theranostics. 2021

[7]
Ultrasound-Responsive Nanodelivery System of GPC3-Targeting and Sonosensitizer for Visualized Hepatocellular Carcinoma Therapy.

Int J Nanomedicine. 2024

[8]
IR-820@NBs Combined with MG-132 Enhances the Anti-Hepatocellular Carcinoma Effect of Sonodynamic Therapy.

Int J Nanomedicine. 2023

[9]
Synergistic Anticancer Strategy of Sonodynamic Therapy Combined with PI-103 Against Hepatocellular Carcinoma.

Drug Des Devel Ther. 2021

[10]
Single-cell RNA sequencing reveals the mechanism of sonodynamic therapy combined with a RAS inhibitor in the setting of hepatocellular carcinoma.

J Nanobiotechnology. 2021-6-12

引用本文的文献

[1]
The crosstalk between glutathione metabolism and non-coding RNAs in cancer progression and treatment resistance.

Redox Biol. 2025-7

[2]
Mitochondrial Regulation of Ferroptosis in Cancer Cells.

Int J Biol Sci. 2025-2-24

[3]
Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches.

Cancers (Basel). 2025-1-24

[4]
Targeting ferroptosis: the role of non-coding RNAs in hepatocellular carcinoma progression and therapy.

Naunyn Schmiedebergs Arch Pharmacol. 2025-1-16

[5]
Synergistic SDT/cuproptosis therapy for liver hepatocellular carcinoma: enhanced antitumor efficacy and specific mechanisms.

J Nanobiotechnology. 2024-12-18

[6]
CsWO@NBs as a Multi-Image Guided Photothermal/Photodynamic Combination Therapy Platform for the Treatment of Hepatocellular Carcinoma.

Int J Nanomedicine. 2024-12-11

[7]
RNA-Seq Reveals the Mechanism of Pyroptosis Induced by Oxygen-Enriched IR780 Nanobubbles-Mediated Sono-Photodynamic Therapy.

Int J Nanomedicine. 2024-12-4

[8]
Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy.

Front Immunol. 2024

[9]
Curcumin Nanoparticles-related Non-invasive Tumor Therapy, and Cardiotoxicity Relieve.

Curr Med Chem. 2025

[10]
Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs.

Front Immunol. 2024

本文引用的文献

[1]
Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy.

Sci Bull (Beijing). 2021-2-26

[2]
Advanced biotechnology-assisted precise sonodynamic therapy.

Chem Soc Rev. 2021-10-18

[3]
Engineering the Redox-Driven Channel for Precisely Regulating Nanoconfined Glutathione Identification and Transport.

ACS Appl Mater Interfaces. 2021-10-20

[4]
Recent development of near-infrared photoacoustic probes based on small-molecule organic dye.

RSC Chem Biol. 2021-3-24

[5]
Rigidity Bridging Flexibility to Harmonize Three Excited-State Deactivation Pathways for NIR-II-Fluorescent-Imaging-Guided Phototherapy.

Adv Healthc Mater. 2021-10

[6]
Single-cell RNA sequencing reveals the mechanism of sonodynamic therapy combined with a RAS inhibitor in the setting of hepatocellular carcinoma.

J Nanobiotechnology. 2021-6-12

[7]
Safe and Targeted Sonodynamic Cancer Therapy Using Biocompatible Exosome-Based Nanosonosensitizers.

ACS Appl Mater Interfaces. 2021-6-9

[8]
GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis.

Cell Death Dis. 2021-4-30

[9]
H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis.

Free Radic Biol Med. 2021-6

[10]
O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer.

Cell Death Discov. 2021-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索