Suppr超能文献

深度学习辅助诊断小儿颅骨平片骨折。

Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs.

机构信息

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

Department of Radiology, Armed Forces Yangju Hospital, Yangju, Korea.

出版信息

Korean J Radiol. 2022 Mar;23(3):343-354. doi: 10.3348/kjr.2021.0449. Epub 2022 Jan 4.

Abstract

OBJECTIVE

To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children.

MATERIALS AND METHODS

This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs).

RESULTS

The AI model showed an AUROC of 0.922 (95% CI, 0.842-0.969) in the internal test set and 0.870 (95% CI, 0.785-0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%-92.0%) and specificity of 91.3% (95% CI, 79.2%-97.6%) for the internal test set and 78.9% (95% CI, 54.4%-93.9%) and 88.2% (95% CI, 78.7%-94.4%), respectively, for the external test set. With the model's assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020-0.168; = 0.012) and 0.069 (95% CI, 0.002-0.136; = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074-0.090; = 0.850).

CONCLUSION

A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.

摘要

目的

开发和评估一种基于深度学习的人工智能(AI)模型,用于检测儿童普通 X 光片上的颅骨骨折。

材料和方法

本回顾性多中心研究包括来自两家医院的开发数据集(n = 149 和 264)和来自第三家医院的外部测试集(n = 95)。数据集包括接受颅骨 X 光和颅计算机断层扫描(CT)检查的头部外伤儿童。开发数据集分为训练集、调整集和内部测试集,比例为 7:1:2。颅骨骨折的参考标准为颅 CT。两名放射科住院医师、一名儿科放射科医生和两名急诊医生在外部测试集上进行了两次有和没有 AI 辅助的观察者研究。我们获得了受试者工作特征曲线(ROC)下面积(AUROC)、敏感性和特异性及其 95%置信区间(CI)。

结果

AI 模型在内部测试集中的 AUROC 为 0.922(95%CI,0.842-0.969),在外部测试集中为 0.870(95%CI,0.785-0.930)。该模型在内部测试集中的敏感性为 81.1%(95%CI,64.8%-92.0%),特异性为 91.3%(95%CI,79.2%-97.6%),在外部测试集中分别为 78.9%(95%CI,54.4%-93.9%)和 88.2%(95%CI,78.7%-94.4%)。在有模型辅助的情况下,放射科住院医师(汇总结果)和急诊医师(汇总结果)的 AUROC 显著提高,与无 AI 辅助阅读的差异分别为 0.094(95%CI,0.020-0.168; = 0.012)和 0.069(95%CI,0.002-0.136; = 0.043),但儿科放射科医生的差异为 0.008(95%CI,-0.074-0.090; = 0.850)。

结论

基于深度学习的人工智能模型提高了经验不足的放射科医师和急诊医师在普通 X 光片上诊断儿童颅骨骨折的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c11/8876653/71872ad64aa2/kjr-23-343-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验