文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles.

作者信息

Chiesa Enrica, Greco Antonietta, Riva Federica, Dorati Rossella, Conti Bice, Modena Tiziana, Genta Ida

机构信息

Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.

Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.

出版信息

Pharmaceuticals (Basel). 2022 Jan 17;15(1):103. doi: 10.3390/ph15010103.


DOI:10.3390/ph15010103
PMID:35056160
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8781203/
Abstract

Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs' internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/96ea9423e37d/pharmaceuticals-15-00103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/67a3c46c3d5f/pharmaceuticals-15-00103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/3a77666de638/pharmaceuticals-15-00103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/ef790658f1b3/pharmaceuticals-15-00103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/8493a40eb80f/pharmaceuticals-15-00103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/12484a8152f8/pharmaceuticals-15-00103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/356b7c2a4864/pharmaceuticals-15-00103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/b82782a6669d/pharmaceuticals-15-00103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/e366d06b802a/pharmaceuticals-15-00103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/96ea9423e37d/pharmaceuticals-15-00103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/67a3c46c3d5f/pharmaceuticals-15-00103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/3a77666de638/pharmaceuticals-15-00103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/ef790658f1b3/pharmaceuticals-15-00103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/8493a40eb80f/pharmaceuticals-15-00103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/12484a8152f8/pharmaceuticals-15-00103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/356b7c2a4864/pharmaceuticals-15-00103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/b82782a6669d/pharmaceuticals-15-00103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/e366d06b802a/pharmaceuticals-15-00103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c5/8781203/96ea9423e37d/pharmaceuticals-15-00103-g009.jpg

相似文献

[1]
CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles.

Pharmaceuticals (Basel). 2022-1-17

[2]
On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation.

Pharmaceutics. 2020-3-13

[3]
Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions.

Pharmaceutics. 2021-9-26

[4]
One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.

Carbohydr Polym. 2020-3-6

[5]
Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells.

Mol Vis. 2011-1-27

[6]
Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response.

J Control Release. 2011-7-2

[7]
HA-coated chitosan nanoparticles for CD44-mediated nucleic acid delivery.

Macromol Biosci. 2013-9-17

[8]
Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells.

Bioconjug Chem. 2012-11-12

[9]
Mannosylation Allows for Synergic (CD44/C-Type Lectin) Uptake of Hyaluronic Acid Nanoparticles in Dendritic Cells, but Only upon Correct Ligand Presentation.

Adv Healthc Mater. 2016-2-10

[10]
Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel.

Acta Biomater. 2021-4-15

引用本文的文献

[1]
An Update on Novel Drug Delivery Systems for the Management of Glaucoma.

Pharmaceutics. 2025-8-21

[2]
DFT and Molecular Docking Study of HA-Conjugated SWCNTs for CD44-Targeted Delivery of Platinum-Based Chemotherapeutics.

Pharmaceuticals (Basel). 2025-5-27

[3]
Macrophage targeting precision nanomedicine utilizing ROS-responsive metallozyme-loaded nanomicelle for enhanced treatment of gout-induced inflammation.

Sci Technol Adv Mater. 2025-4-22

[4]
Hyaluronic acid-coated capecitabine nanostructures for CD44 receptor-mediated targeting in breast cancer therapy.

RSC Adv. 2025-4-22

[5]
Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery.

Molecules. 2025-3-17

[6]
PLGA/HA sustained-release system loaded with liraglutide for the treatment of diabetic periodontitis through inhibition of necroptosis.

Mater Today Bio. 2025-2-15

[7]
The Neoteric Paradigm of Biomolecule-Functionalized Albumin-Based Targeted Cancer Therapeutics.

AAPS PharmSciTech. 2024-11-5

[8]
Cascade-responsive size/charge bidirectional-tunable nanodelivery penetrates pancreatic tumor barriers.

Chem Sci. 2024-8-29

[9]
Revealing Changes in Celecoxib Nanostructured Lipid Carrier's Bioavailability Using Hyaluronic Acid as an Enhancer by HPLC-MS/MS.

Drug Des Devel Ther. 2024

[10]
Targeted Delivery of Gemcitabine for Precision Therapy of Cholangiocarcinoma Using Hyaluronic Acid-Modified Metal-Organic Framework Nanoparticles.

ACS Omega. 2024-2-27

本文引用的文献

[1]
Hyaluronan-coated nanoparticles for active tumor targeting: Influence of polysaccharide molecular weight on cell uptake.

Colloids Surf B Biointerfaces. 2022-2

[2]
Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions.

Pharmaceutics. 2021-9-26

[3]
Current hurdles to the translation of nanomedicines from bench to the clinic.

Drug Deliv Transl Res. 2022-3

[4]
Patents in chemotherapy: nanoparticles as drug-delivery vehicles.

Pharm Pat Anal. 2020-7

[5]
On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation.

Pharmaceutics. 2020-3-13

[6]
Subcellular Performance of Nanoparticles in Cancer Therapy.

Int J Nanomedicine. 2020-2-5

[7]
The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency.

Beilstein J Nanotechnol. 2019-12-30

[8]
Staggered Herringbone Microfluid Device for the Manufacturing of Chitosan/TPP Nanoparticles: Systematic Optimization and Preliminary Biological Evaluation.

Int J Mol Sci. 2019-12-9

[9]
Hyaluronic Acid-Based Nanomaterials for Cancer Therapy.

Polymers (Basel). 2018-10-12

[10]
Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy.

Langmuir. 2018-11-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索