Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia;
Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2117137119.
Here, we report on a previously unknown form of thalamocortical plasticity observed following lesions of the primary visual area (V1) in marmoset monkeys. In primates, lateral geniculate nucleus (LGN) neurons form parallel pathways to the cortex, which are characterized by the expression of different calcium-binding proteins. LGN projections to the middle temporal (MT) area only originate in the koniocellular layers, where many neurons express calbindin. In contrast, projections to V1 also originate in the magnocellular and parvocellular layers, where neurons express parvalbumin but not calbindin. Our results demonstrate that this specificity is disrupted following long-term (1 to 3 y) unilateral V1 lesions, indicating active rearrangement of the geniculocortical circuit. In lesioned animals, retrograde tracing revealed MT-projecting neurons scattered throughout the lesion projection zone (LPZ, the sector of the LGN that underwent retrograde degeneration following a V1 lesion). Many of the MT-projecting neurons had large cell bodies and were located outside the koniocellular layers. Furthermore, we found that a large percentage of magno- and parvocellular neurons expressed calbindin in addition to the expected parvalbumin expression and that this coexpression was present in many of the MT-projecting neurons within the LPZ. These results demonstrate that V1 lesions trigger neurochemical and structural remodeling of the geniculo-extrastriate pathway, leading to the emergence of nonkoniocellular input to MT. This has potential implications for our understanding of the neurobiological bases of the residual visual abilities that survive V1 lesions, including motion perception and blindsight, and reveals targets for rehabilitation strategies to ameliorate the consequences of cortical blindness.
在这里,我们报告了在狨猴的初级视觉区(V1)损伤后观察到的一种以前未知的丘脑皮质可塑性形式。在灵长类动物中,外侧膝状体核(LGN)神经元形成到皮质的平行途径,其特征是表达不同的钙结合蛋白。LGN 到颞中(MT)区的投射仅起源于 koniocellular 层,其中许多神经元表达钙结合蛋白。相比之下,到 V1 的投射也起源于大细胞和小细胞层,其中神经元表达 parvalbumin 但不表达 calbindin。我们的结果表明,这种特异性在长期(1 到 3 年)单侧 V1 损伤后被破坏,表明 geniculocortical 回路的积极重排。在损伤动物中,逆行追踪显示 MT 投射神经元散布在损伤投射区(LPZ,V1 损伤后经历逆行变性的 LGN 区域)。许多 MT 投射神经元具有大的细胞体,位于 koniocellular 层之外。此外,我们发现,除了预期的 parvalbumin 表达之外,很大比例的 magno- 和 parvocellular 神经元还表达 calbindin,并且这种共表达存在于 LPZ 内的许多 MT 投射神经元中。这些结果表明,V1 损伤引发了 geniculo-extrastriate 通路的神经化学和结构重塑,导致非 koniocellular 输入到 MT 的出现。这对于我们理解 V1 损伤后残留视觉能力的神经生物学基础具有潜在意义,包括运动感知和盲视,并揭示了康复策略的目标,以改善皮质盲的后果。