Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA 98109, USA.
Quintepa Computing LLC, Nashville, TN 37205, USA.
Viruses. 2021 Dec 21;14(1):9. doi: 10.3390/v14010009.
The emergence and establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from coronavirus disease 2019 (COVID-19) cases in the United States (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from 19 January 2020 to 15 March 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics and to identify VRVs with significant and substantial dynamics (false discovery rate q-value < 0.01; maximum VRV proportion >10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modeling was performed to gain insight into the potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which had not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identified 17 VRVs ~91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of four VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported a potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起关注的变异株 (VOI) 和关注的变异株 (VOC) 的出现和确立突显了基因组监测的重要性。我们提出了一种统计学习策略 (SLS),用于识别和时空跟踪潜在相关的刺突蛋白突变。我们分析了 2020 年 1 月 19 日至 2021 年 3 月 15 日期间在美国从 GISAID 中储存的 167893 例新冠肺炎 (COVID-19) 病例的 167893 个刺突蛋白序列(不包括 21391 个 VOI/VOC 株序列)。与参考刺突蛋白序列的比对导致了病毒残基变异 (VRV) 的鉴定,即与参考株相比存在取代的残基。接下来,应用广义加性模型来模拟 VRV 的时间动态,并识别具有显著和实质性动态的 VRV(假发现率 q 值 < 0.01;至少一天内最大 VRV 比例 >10%)。然后,应用无监督学习按时空模式对 VRV 进行层次组织,并识别 VRV 单倍型。最后,进行同源建模以深入了解 VRV 对刺突蛋白结构的潜在影响。我们鉴定了 90 个 VRV,其中 71 个以前未在 VOI/VOC 中观察到,35 个最近出现且持续存在。我们的分析比它们的第一个相应 VOI/VOC 出版物早发现了 17 个 VRV~91 天。无监督学习揭示了四个或更多 VRV 的八个 VRV 单倍型,提示存在两种新兴株(B1.1.222 和 B.1.234)。结构建模支持 D1118H 和 L452R 突变的潜在功能影响。SLS 方法同样可以随着时间的推移监测所有刺突残基,独立于现有的系统发育分类,并且与现有的基因组监测方法互补。