Suppr超能文献

基于计算机的预测:未来 COVID-19 疫苗设计中的免疫逃逸热点。

In silico prediction of immune-escaping hot spots for future COVID-19 vaccine design.

机构信息

Graphen Inc., New York, NY, 10110, USA.

Adimmune Corp., Taichung City, 427003, Taiwan.

出版信息

Sci Rep. 2023 Aug 18;13(1):13468. doi: 10.1038/s41598-023-40741-1.

Abstract

The COVID-19 pandemic has had a widespread impact on a global scale, and the evolution of considerable dominants has already taken place. Some variants contained certain key mutations located on the receptor binding domain (RBD) of spike protein, such as E484K and N501Y. It is increasingly worrying that these variants could impair the efficacy of current vaccines or therapies. Therefore, analyzing and predicting the high-risk mutations of SARS-CoV-2 spike glycoprotein is crucial to design future vaccines against the different variants. In this work, we proposed an in silico approach, immune-escaping score (IES), to predict high-risk immune-escaping hot spots on the receptor-binding domain (RBD), implemented through integrated delta binding free energy measured by computational mutagenesis of spike-antibody complexes and mutation frequency calculated from viral genome sequencing data. We identified 23 potentially immune-escaping mutations on the RBD by using IES, nine of which occurred in omicron variants (R346K, K417N, N440K, L452Q, L452R, S477N, T478K, F490S, and N501Y), despite our dataset being curated before the omicron first appeared. The highest immune-escaping score (IES = 1) was found for E484K, which agrees with recent studies stating that the mutation significantly reduced the efficacy of neutralization antibodies. Furthermore, our predicted delta binding free energy and IES show a high correlation with high-throughput deep mutational scanning data (Pearson's r = 0.70) and experimentally measured neutralization titers data (mean Pearson's r = -0.80). In summary, our work presents a new method to identify the potentially immune-escaping mutations on the RBD and provides valuable insights into future COVID-19 vaccine design.

摘要

新型冠状病毒肺炎(COVID-19)疫情在全球范围内广泛流行,已经发生了相当多的优势变异。一些变异株在刺突蛋白的受体结合域(RBD)中包含某些关键突变,例如 E484K 和 N501Y。令人越来越担忧的是,这些变异可能会削弱当前疫苗或疗法的效果。因此,分析和预测 SARS-CoV-2 刺突糖蛋白的高危突变对于设计针对不同变异株的未来疫苗至关重要。在这项工作中,我们提出了一种计算方法——免疫逃逸评分(IES),通过计算刺突抗体复合物的计算突变结合自由能和从病毒基因组测序数据中计算出的突变频率,来预测 RBD 上的高危免疫逃逸热点。我们使用 IES 鉴定了 RBD 上的 23 个潜在的免疫逃逸突变,其中 9 个发生在奥密克戎变异株中(R346K、K417N、N440K、L452Q、L452R、S477N、T478K、F490S 和 N501Y),尽管我们的数据集中在奥密克戎首次出现之前就已经整理好了。E484K 的免疫逃逸评分(IES)最高(IES=1),这与最近的研究表明该突变显著降低了中和抗体的效果一致。此外,我们预测的 delta 结合自由能和 IES 与高通量深度突变扫描数据(Pearson r=0.70)和实验测量的中和滴度数据(平均 Pearson r=-0.80)高度相关。总之,我们的工作提出了一种新的方法来识别 RBD 上潜在的免疫逃逸突变,并为未来的 COVID-19 疫苗设计提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb22/10439115/9d4ca24bbf0e/41598_2023_40741_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验