Suppr超能文献

基于肌电图和基于事件的相机传感器融合的手势识别:神经形态计算中的一个基准

Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing.

作者信息

Ceolini Enea, Frenkel Charlotte, Shrestha Sumit Bam, Taverni Gemma, Khacef Lyes, Payvand Melika, Donati Elisa

机构信息

Institute of Neuroinformatics, University of Zurich, ETH Zurich, Zurich, Switzerland.

ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

出版信息

Front Neurosci. 2020 Aug 5;14:637. doi: 10.3389/fnins.2020.00637. eCollection 2020.

Abstract

Hand gestures are a form of non-verbal communication used by individuals in conjunction with speech to communicate. Nowadays, with the increasing use of technology, hand-gesture recognition is considered to be an important aspect of Human-Machine Interaction (HMI), allowing the machine to capture and interpret the user's intent and to respond accordingly. The ability to discriminate between human gestures can help in several applications, such as assisted living, healthcare, neuro-rehabilitation, and sports. Recently, multi-sensor data fusion mechanisms have been investigated to improve discrimination accuracy. In this paper, we present a sensor fusion framework that integrates complementary systems: the electromyography (EMG) signal from muscles and visual information. This multi-sensor approach, while improving accuracy and robustness, introduces the disadvantage of high computational cost, which grows exponentially with the number of sensors and the number of measurements. Furthermore, this huge amount of data to process can affect the classification latency which can be crucial in real-case scenarios, such as prosthetic control. Neuromorphic technologies can be deployed to overcome these limitations since they allow real-time processing in parallel at low power consumption. In this paper, we present a fully neuromorphic sensor fusion approach for hand-gesture recognition comprised of an event-based vision sensor and three different neuromorphic processors. In particular, we used the event-based camera, called DVS, and two neuromorphic platforms, Loihi and ODIN + MorphIC. The EMG signals were recorded using traditional electrodes and then converted into spikes to be fed into the chips. We collected a dataset of five gestures from sign language where visual and electromyography signals are synchronized. We compared a fully neuromorphic approach to a baseline implemented using traditional machine learning approaches on a portable GPU system. According to the chip's constraints, we designed specific spiking neural networks (SNNs) for sensor fusion that showed classification accuracy comparable to the software baseline. These neuromorphic alternatives have increased inference time, between 20 and 40%, with respect to the GPU system but have a significantly smaller energy-delay product (EDP) which makes them between 30× and 600× more efficient. The proposed work represents a new benchmark that moves neuromorphic computing toward a real-world scenario.

摘要

手势是人们在说话时配合使用的一种非语言交流形式。如今,随着技术使用的增加,手势识别被视为人机交互(HMI)的一个重要方面,它使机器能够捕捉并解读用户意图并做出相应反应。区分人类手势的能力有助于多种应用,如辅助生活、医疗保健、神经康复和体育等。最近,人们研究了多传感器数据融合机制以提高识别准确率。在本文中,我们提出了一个传感器融合框架,该框架整合了互补系统:来自肌肉的肌电图(EMG)信号和视觉信息。这种多传感器方法虽然提高了准确性和鲁棒性,但也带来了计算成本高的缺点,计算成本会随着传感器数量和测量次数呈指数增长。此外,如此大量的数据需要处理会影响分类延迟,而在实际场景(如假肢控制)中,分类延迟可能至关重要。可以部署神经形态技术来克服这些限制,因为它们允许在低功耗下进行实时并行处理。在本文中,我们提出了一种用于手势识别的全神经形态传感器融合方法,该方法由一个基于事件的视觉传感器和三个不同的神经形态处理器组成。具体而言,我们使用了名为DVS的基于事件的相机以及两个神经形态平台Loihi和ODIN + MorphIC。EMG信号通过传统电极记录,然后转换为脉冲信号输入芯片。我们从手语中收集了一个包含五个手势的数据集,其中视觉信号和肌电图信号是同步的。我们将全神经形态方法与在便携式GPU系统上使用传统机器学习方法实现的基线进行了比较。根据芯片的限制,我们为传感器融合设计了特定的脉冲神经网络(SNN),其显示出与软件基线相当的分类准确率。这些神经形态替代方案相对于GPU系统的推理时间增加了20%到40%,但具有显著更小的能量延迟积(EDP),这使得它们的效率提高了30倍到600倍。所提出的工作代表了一个新的基准,将神经形态计算推向了实际应用场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e54/7438887/e037d39ab02b/fnins-14-00637-g0001.jpg

相似文献

1
Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing.
Front Neurosci. 2020 Aug 5;14:637. doi: 10.3389/fnins.2020.00637. eCollection 2020.
3
Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
Neural Netw. 2020 Dec;132:108-120. doi: 10.1016/j.neunet.2020.08.001. Epub 2020 Aug 17.
4
Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
Sensors (Basel). 2023 Sep 6;23(18):7701. doi: 10.3390/s23187701.
5
Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
Front Neurosci. 2022 Nov 11;16:951164. doi: 10.3389/fnins.2022.951164. eCollection 2022.
6
FLGR: Fixed Length Gists Representation Learning for RNN-HMM Hybrid-Based Neuromorphic Continuous Gesture Recognition.
Front Neurosci. 2019 Feb 12;13:73. doi: 10.3389/fnins.2019.00073. eCollection 2019.
7
A Real-Time Hand Gesture Recognition System for Low-Latency HMI via Transient HD-SEMG and In-Sensor Computing.
IEEE J Biomed Health Inform. 2024 Sep;28(9):5156-5167. doi: 10.1109/JBHI.2024.3417236. Epub 2024 Sep 5.
8
NeuroCARE: A generic neuromorphic edge computing framework for healthcare applications.
Front Neurosci. 2023 Jan 23;17:1093865. doi: 10.3389/fnins.2023.1093865. eCollection 2023.
10
Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey.
Biomimetics (Basel). 2024 Jul 20;9(7):444. doi: 10.3390/biomimetics9070444.

引用本文的文献

1
Dynamic Vision-Based Non-Contact Rotating Machine Fault Diagnosis with EViT.
Sensors (Basel). 2025 Sep 3;25(17):5472. doi: 10.3390/s25175472.
2
A neuromorphic multi-scale approach for real-time heart rate and state detection.
Npj Unconv Comput. 2025;2(1):6. doi: 10.1038/s44335-025-00024-6. Epub 2025 Apr 2.
3
Electromyography Signals in Embedded Systems: A Review of Processing and Classification Techniques.
Biomimetics (Basel). 2025 Mar 10;10(3):166. doi: 10.3390/biomimetics10030166.
4
Neuromorphic computing at scale.
Nature. 2025 Jan;637(8047):801-812. doi: 10.1038/s41586-024-08253-8. Epub 2025 Jan 22.
5
Spiking neural networks for biomedical signal analysis.
Biomed Eng Lett. 2024 Jul 5;14(5):955-966. doi: 10.1007/s13534-024-00405-z. eCollection 2024 Sep.
6
Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey.
Biomimetics (Basel). 2024 Jul 20;9(7):444. doi: 10.3390/biomimetics9070444.
7
Spiking neural networks for nonlinear regression.
R Soc Open Sci. 2024 May 1;11(5):231606. doi: 10.1098/rsos.231606. eCollection 2024 May.
8
DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays.
Nat Commun. 2024 Apr 24;15(1):3446. doi: 10.1038/s41467-024-47764-w.
9
Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration.
Front Neurosci. 2024 Mar 28;18:1335422. doi: 10.3389/fnins.2024.1335422. eCollection 2024.
10
High-order sensory processing nanocircuit based on coupled VO oscillators.
Nat Commun. 2024 Feb 24;15(1):1693. doi: 10.1038/s41467-024-45992-8.

本文引用的文献

1
A systematic review on hand gesture recognition techniques, challenges and applications.
PeerJ Comput Sci. 2019 Sep 16;5:e218. doi: 10.7717/peerj-cs.218. eCollection 2019.
2
Self-organizing neural networks for universal learning and multimodal memory encoding.
Neural Netw. 2019 Dec;120:58-73. doi: 10.1016/j.neunet.2019.08.020. Epub 2019 Sep 2.
3
MorphIC: A 65-nm 738k-Synapse/mm Quad-Core Binary-Weight Digital Neuromorphic Processor With Stochastic Spike-Driven Online Learning.
IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):999-1010. doi: 10.1109/TBCAS.2019.2928793. Epub 2019 Jul 15.
4
Discrimination of EMG Signals Using a Neuromorphic Implementation of a Spiking Neural Network.
IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):795-803. doi: 10.1109/TBCAS.2019.2925454. Epub 2019 Jun 27.
5
Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
Front Neurosci. 2018 Dec 3;12:891. doi: 10.3389/fnins.2018.00891. eCollection 2018.
6
A 0.086-mm 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS.
IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):145-158. doi: 10.1109/TBCAS.2018.2880425. Epub 2018 Nov 9.
8
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.
Sensors (Basel). 2018 May 18;18(5):1615. doi: 10.3390/s18051615.
9
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.
Neural Comput. 2018 Jun;30(6):1514-1541. doi: 10.1162/neco_a_01086. Epub 2018 Apr 13.
10
Feature Representations for Neuromorphic Audio Spike Streams.
Front Neurosci. 2018 Feb 9;12:23. doi: 10.3389/fnins.2018.00023. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验