Suppr超能文献

自监督学习揭示脑部疾病中的脑功能障碍特征:方法与应用

Self-Supervised Learning to Unveil Brain Dysfunctional Signatures in Brain Disorders: Methods and Applications.

作者信息

Li Ying, Yang Yanwu, Chen Yuchu, Ye Chenfei, Ma Ting

机构信息

School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.

Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Tübingen, Germany.

出版信息

Health Data Sci. 2025 Aug 5;5:0282. doi: 10.34133/hds.0282. eCollection 2025.

Abstract

Precisely decoding brain dysfunction from high-dimensional functional recordings is crucial for advancing our understanding of brain dysfunction in brain disorders. Self-supervised learning (SSL) models offer a transformative approach for mapping dependencies in functional neuroimaging data. Leveraging the intrinsic organization of brain signals for comprehensive feature extraction, these models enable the analysis of critical neurofunctional features within a clinically relevant framework, overcoming challenges related to data heterogeneity and the scarcity of labeled data. This paper provides a comprehensive overview of SSL techniques applied to functional neuroimaging data, such as functional magnetic resonance imaging and electroencephalography, with a specific focus on their applications in various neuropsychiatric disorders. We discuss 3 main categories of SSL methods: contrastive learning, generative learning, and generative-contrastive methods, outlining their basic principles and representative methods. Critically, we highlight the potential of SSL in addressing data scarcity, multimodal integration, and dynamic network modeling for disease detection and prediction. We showcase successful applications of these techniques in understanding and classifying conditions such as Alzheimer's disease, Parkinson's disease, and epilepsy, demonstrating their potential in downstream neuropsychological applications. SSL models provide a scalable and effective methodology for individual detection and prediction in brain disorders. Despite current limitations in interpretability and data heterogeneity, the potential of SSL for future clinical applications, particularly in the areas of transdiagnostic psychosis subtyping and decoding task-based brain functional recordings, is substantial.

摘要

从高维功能记录中精确解码脑功能障碍对于深化我们对脑部疾病中脑功能障碍的理解至关重要。自监督学习(SSL)模型为映射功能神经影像数据中的依赖性提供了一种变革性方法。这些模型利用脑信号的内在组织进行全面的特征提取,能够在临床相关框架内分析关键的神经功能特征,克服了与数据异质性和标记数据稀缺性相关的挑战。本文全面概述了应用于功能神经影像数据(如功能磁共振成像和脑电图)的SSL技术,特别关注其在各种神经精神疾病中的应用。我们讨论了SSL方法的3个主要类别:对比学习、生成学习和生成-对比方法,概述了它们的基本原理和代表性方法。至关重要的是,我们强调了SSL在解决数据稀缺、多模态整合以及用于疾病检测和预测的动态网络建模方面的潜力。我们展示了这些技术在理解和分类诸如阿尔茨海默病、帕金森病和癫痫等病症方面的成功应用,证明了它们在下游神经心理学应用中的潜力。SSL模型为脑部疾病的个体检测和预测提供了一种可扩展且有效的方法。尽管目前在可解释性和数据异质性方面存在局限性,但SSL在未来临床应用中的潜力巨大,特别是在跨诊断精神病亚型分类和解码基于任务的脑功能记录领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/416e/12324563/74611942a22b/hds.0282.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验