Han Xiangmin, Li Junchang
School of Software, Tsinghua University, Beijing, China.
Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Shenzhen, China.
Front Med (Lausanne). 2025 Jul 23;12:1654199. doi: 10.3389/fmed.2025.1654199. eCollection 2025.
Accurate diagnosis of neurodevelopmental disorders relies on understanding the complex interactions and high-order relationships between brain regions. This work aims to model the subtle, disease-specific high-order relationships among brain regions that have been overlooked in existing works.
This paper proposes a Unified Multi-View Hypergraph Learning framework that combines knowledge-driven and data-driven strategies for a more precise and comprehensive representation of the adolescent brain network. The knowledge-driven branch leverages prior knowledge of functional brain subnetworks to guide feature learning and uncover structured, high-order functional associations. Meanwhile, the data-driven branch consists of two complementary modules: at the global level, a nearest-neighbor-based strategy captures large-scale associations involving overlapping brain regions; at the local level, a granularity-adaptive approach identifies finer, region-specific high-order relationships, allowing for a more nuanced understanding of brain network interactions.
Experimental results on the ABIDE and ADHD datasets demonstrate that our method outperforms existing methods in diagnostic accuracy and robustness. Additionally, visualizing the high-order associations learned from both branches reveals new insights into the pathogenic mechanisms of these disorders.
The proposed method combines knowledge-driven and data-driven strategies for high-order brain network modeling, advancing the understanding of brain networks in neurodevelopmental diseases.
准确诊断神经发育障碍依赖于理解脑区之间复杂的相互作用和高阶关系。本研究旨在对现有研究中被忽视的脑区之间细微的、疾病特异性的高阶关系进行建模。
本文提出了一种统一多视图超图学习框架,该框架结合了知识驱动和数据驱动策略,以更精确、全面地表示青少年脑网络。知识驱动分支利用功能性脑子网络的先验知识来指导特征学习,并揭示结构化的高阶功能关联。同时,数据驱动分支由两个互补模块组成:在全局层面,基于最近邻的策略捕捉涉及重叠脑区的大规模关联;在局部层面,粒度自适应方法识别更精细的、特定区域的高阶关系,从而更细致地理解脑网络相互作用。
在ABIDE和ADHD数据集上的实验结果表明,我们的方法在诊断准确性和鲁棒性方面优于现有方法。此外,可视化从两个分支学到的高阶关联揭示了这些疾病致病机制的新见解。
所提出的方法结合了知识驱动和数据驱动策略用于高阶脑网络建模,推动了对神经发育疾病中脑网络的理解。