Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Signal Transduct Target Ther. 2022 Jan 24;7(1):22. doi: 10.1038/s41392-022-00878-3.
As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I-MAVS complex to attenuate the RIG-I-mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.
作为一种高致病性的人类冠状病毒,SARS-CoV-2 必须对抗复杂的抗病毒宿主反应网络,以建立感染和传播。核酸诱导的应激反应是抗病毒防御的重要组成部分,与抗病毒先天免疫密切相关。然而,SARS-CoV-2 是否调节应激反应途径以实现免疫逃避仍不清楚。在这项研究中,发现 SARS-CoV-2 的 NSP5 和 N 蛋白可减弱抗病毒应激颗粒(avSG)的形成。此外,NSP5 和 N 抑制了仙台病毒感染或转染合成双链 RNA 模拟物(poly (I:C))诱导的 IFN 表达,抑制 TBK1 和 IRF3 的磷酸化,并抑制 IRF3 的核转位。此外,过表达 NSP5 或 N 蛋白的 HEK293T 细胞对水疱性口炎病毒感染的抵抗力降低。在机制上,NSP5 抑制 avSG 的形成并破坏 RIG-I-MAVS 复合物,从而减弱 RIG-I 介导的抗病毒免疫。与 NSP5 的多个靶标不同,N 蛋白特异性靶向 RIG-I 的上游共因子。N 蛋白与 G3BP1 相互作用,阻止 avSG 的形成,并阻止共因子 G3BP1 和 PACT 激活 RIG-I。此外,N 蛋白还影响 RIG-I 对 dsRNA 的识别。这项研究揭示了 SARS-CoV-2、应激反应和先天抗病毒免疫之间的密切关系,为 COVID-19 的发病机制提供了新的见解。
Signal Transduct Target Ther. 2022-1-24
Viruses. 2025-7-27
bioRxiv. 2025-7-24
Viruses. 2025-5-20
Signal Transduct Target Ther. 2021-4-24
Signal Transduct Target Ther. 2020-11-17
Signal Transduct Target Ther. 2020-10-6
J Med Virol. 2020-10