Nobrega Marcelo M, Teixeira-Neto Erico, Cairns Andrew B, Temperini Marcia L A, Bini Roberto
Departamento de Química Fundamental , Instituto de Química da Universidade de São Paulo (USP) , CP 26077-CEP 05513-970-São Paulo , SP , Brazil . Email:
LENS , European Laboratory for Nonlinear Spectroscopy , Via Nello Carrara 1, 50019 Sesto Fiorentino (FI) , Italy.
Chem Sci. 2017 Oct 18;9(1):254-260. doi: 10.1039/c7sc03445h. eCollection 2018 Jan 7.
Low-dimensional nanomaterials such as highly ordered polyaniline (PANI) have attracted considerable interest due to their expected extraordinary electronic and optoelectronic properties. In spite of several attempts, the attainment of atomically well-ordered PANI is a long-standing challenge. Pressure-induced polymerization of aromatic molecules in the crystal phase has been demonstrated as a practicable route for the synthesis of highly ordered polymers but this approach has never been tested to produce PANI. Here we show the synthesis of diamondoid polyaniline-like nanothreads at 33 GPa and 550 K by compressing aniline in crystal phase-II. Infrared spectroscopy, transmission electron microscopy, X-ray diffraction data, and DFT calculations support the formation of this totally new polyaniline-like nanothread. The NH-enriched carbon nanothread combines the outstanding mechanical properties of carbon nanotubes with the versatility of NH groups decorating the exterior of the nanothreads representing potential active sites for doping and as linkers for molecules with biological interest and inorganic nanostructures. The synergy of all of these properties emphasizes the strong potential of this material to be applied in a broad range of areas, from chemistry to materials engineering.
诸如高度有序的聚苯胺(PANI)之类的低维纳米材料因其预期的非凡电子和光电特性而引起了广泛关注。尽管进行了多次尝试,但实现原子级有序的聚苯胺仍是一个长期存在的挑战。晶体相中芳香分子的压力诱导聚合已被证明是合成高度有序聚合物的可行途径,但这种方法从未被用于制备聚苯胺。在此,我们展示了在33 GPa和550 K条件下,通过压缩处于晶相II的苯胺来合成类金刚石聚苯胺纳米线。红外光谱、透射电子显微镜、X射线衍射数据以及密度泛函理论计算均支持这种全新的类聚苯胺纳米线的形成。富含NH的碳纳米线将碳纳米管出色的机械性能与装饰纳米线外部的NH基团的多功能性相结合,这些NH基团代表了潜在的掺杂活性位点以及与具有生物学意义的分子和无机纳米结构相连的连接体。所有这些特性的协同作用突出了这种材料在从化学到材料工程等广泛领域应用的强大潜力。