Suppr超能文献

基于双尺度并行注意力网络的肺实质分割

[Lung parenchyma segmentation based on double scale parallel attention network].

作者信息

Feng Kaili, Ren Lili, Wu Yanlin, Li Yan, Wang Hongrui, Wang Guanglei

机构信息

School of Electronic Information Engineering, Hebei University, Baoding, Hebei 071002, P. R. China.

Affiliated Hospital of Hebei University, Baoding, Hebei 071002, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):721-729. doi: 10.7507/1001-5515.202108005.

Abstract

[]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the "encoder-decoder" structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.

摘要

肺实质的自动准确分割对于肺癌辅助诊断至关重要。近年来,深度学习领域的研究人员提出了一些基于U-Net的改进型肺实质分割方法。然而,现有的分割方法忽略了不同层特征图中语义信息的互补融合,未能区分特征图中不同空间和通道的重要性。为解决这一问题,本文提出了双尺度并行注意力(DSPA)网络(DSPA-Net)架构,并在“编码器-解码器”结构中引入了DSPA模块和空洞空间金字塔池化(ASPP)模块。其中,DSPA模块在借助协同注意力(CA)获取特征图准确空间和通道信息的同时,聚合不同层级特征图的语义信息。ASPP模块使用具有不同空洞率的多个并行卷积核,以获取不同感受野下包含多尺度信息的特征图。这两个模块分别处理不同层级特征图和同一层级特征图中的多尺度信息处理问题。我们在Kaggle竞赛数据集上进行了实验验证。实验结果证明,该网络架构与当前主流分割网络相比具有明显优势。骰子相似系数(DSC)和交并比(IoU)的值分别达到了0.972±0.002和0.945±0.004。本文实现了肺实质的自动准确分割,并为注意力机制和多尺度信息在肺实质分割领域的应用提供了参考。

相似文献

1
[Lung parenchyma segmentation based on double scale parallel attention network].基于双尺度并行注意力网络的肺实质分割
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):721-729. doi: 10.7507/1001-5515.202108005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验