Suppr超能文献

插值分割:一种以数据为中心的深度学习方法,利用大量插值数据提升气道分割性能。

Interpolation-split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance.

作者信息

Cheung Wing Keung, Pakzad Ashkan, Mogulkoc Nesrin, Needleman Sarah Helen, Rangelov Bojidar, Gudmundsson Eyjolfur, Zhao An, Abbas Mariam, McLaverty Davina, Asimakopoulos Dimitrios, Chapman Robert, Savas Recep, Janes Sam M, Hu Yipeng, Alexander Daniel C, Hurst John R, Jacob Joseph

机构信息

Satsuma Lab, Centre for Medical Image Computing, University College London, 1st Floor, 90 High Holborn, London, WC1V6LJ UK.

Department of Computer Science, University College London, London, UK.

出版信息

J Big Data. 2024;11(1):104. doi: 10.1186/s40537-024-00974-x. Epub 2024 Aug 4.

Abstract

The morphology and distribution of airway tree abnormalities enable diagnosis and disease characterisation across a variety of chronic respiratory conditions. In this regard, airway segmentation plays a critical role in the production of the outline of the entire airway tree to enable estimation of disease extent and severity. Furthermore, the segmentation of a complete airway tree is challenging as the intensity, scale/size and shape of airway segments and their walls change across generations. The existing classical techniques either provide an undersegmented or oversegmented airway tree, and manual intervention is required for optimal airway tree segmentation. The recent development of deep learning methods provides a fully automatic way of segmenting airway trees; however, these methods usually require high GPU memory usage and are difficult to implement in low computational resource environments. Therefore, in this study, we propose a data-centric deep learning technique with big interpolated data, Interpolation-Split, to boost the segmentation performance of the airway tree. The proposed technique utilises interpolation and image split to improve data usefulness and quality. Then, an ensemble learning strategy is implemented to aggregate the segmented airway segments at different scales. In terms of average segmentation performance (dice similarity coefficient, DSC), our method (A) achieves 90.55%, 89.52%, and 85.80%; (B) outperforms the baseline models by 2.89%, 3.86%, and 3.87% on average; and (C) produces maximum segmentation performance gain by 14.11%, 9.28%, and 12.70% for individual cases when (1) nnU-Net with instant normalisation and leaky ReLU; (2) nnU-Net with batch normalisation and ReLU; and (3) modified dilated U-Net are used respectively. Our proposed method outperformed the state-of-the-art airway segmentation approaches. Furthermore, our proposed technique has low RAM and GPU memory usage, and it is GPU memory-efficient and highly flexible, enabling it to be deployed on any 2D deep learning model.

摘要

气道树异常的形态和分布有助于对各种慢性呼吸道疾病进行诊断和疾病特征描述。在这方面,气道分割在生成整个气道树的轮廓以估计疾病范围和严重程度方面起着关键作用。此外,完整气道树的分割具有挑战性,因为气道段及其壁的强度、尺度/大小和形状会随着代数的变化而改变。现有的经典技术要么提供分割不足的气道树,要么提供分割过度的气道树,并且需要人工干预才能实现最佳的气道树分割。深度学习方法的最新发展提供了一种全自动的气道树分割方法;然而,这些方法通常需要高GPU内存使用量,并且难以在低计算资源环境中实现。因此,在本研究中,我们提出了一种以数据为中心的深度学习技术,即带有大插值数据的插值分割(Interpolation-Split),以提高气道树的分割性能。所提出的技术利用插值和图像分割来提高数据的有用性和质量。然后,实施一种集成学习策略来聚合不同尺度下分割出的气道段。在平均分割性能(骰子相似系数,DSC)方面,我们的方法(A)分别达到了90.55%、89.52%和85.80%;(B)平均比基线模型高出2.89%、3.86%和3.87%;(C)当分别使用(1)带有即时归一化和泄漏ReLU的nnU-Net;(2)带有批归一化和ReLU的nnU-Net;以及(3)改进的扩张U-Net时,对于个别案例,分割性能的最大提升分别为14.11%、9.28%和12.70%。我们提出的方法优于当前最先进的气道分割方法。此外,我们提出的技术具有低RAM和GPU内存使用量,并且它具有GPU内存高效性和高度灵活性,能够部署在任何二维深度学习模型上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc6/11298507/f784b9f6a3d9/40537_2024_974_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验