Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK.
Nanoscale. 2022 Mar 10;14(10):3658-3697. doi: 10.1039/d1nr05670k.
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
磁共振粒子成像(MPI)是一种新兴的示踪剂模态,可在外部振荡磁场存在的情况下,实时三维成像超顺磁氧化铁纳米颗粒(SPIONs)产生的非线性磁化。作为一种技术,它产生具有绝对定量的高度灵敏的无辐射断层图像。由于对比度高,以及在深度上信号衰减为零,因此在体内成像几乎没有任何限制。这些特性使得各种具有临床意义的生物医学应用成为可能。在这篇综述的开篇部分,引入了图像生成的原理,并详细比较了该技术与其他常见成像模态的基本特性。主要特点是介绍了针对改善成像性能而专门设计的 SPION 的最新文献,以及这项新兴技术在当前和有前途的生物医学应用中的发展,特别关注治疗学、细胞跟踪和灌注成像。最后,我们将讨论 MPI 临床转化的最新进展。由于 MPI 中的信号检测几乎完全依赖于所使用的 SPION 的特性,因此这项工作强调了定制合成工艺以生产具有特定特性的 SPION 的重要性,以及这如何影响特定应用中的成像和 MPI 的整体性能。
Curr Opin Chem Biol. 2018-5-10
Int J Nanomedicine. 2015-4-22
J Magn Reson Imaging. 2020-6
World Neurosurg. 2019-2-8
Annu Rev Chem Biomol Eng. 2021-6-7
Nanoscale Adv. 2025-8-5
Mater Today Phys. 2023-3
ACS Appl Nano Mater. 2025-7-16
Chem Mater. 2025-5-20
ACS Appl Mater Interfaces. 2025-4-9
Commun Med (Lond). 2025-3-13
Nanomaterials (Basel). 2024-12-7