文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁粒子成像:一种无辐射、高灵敏度、定量成像方式的示踪剂开发及生物医学应用。

Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

机构信息

Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.

UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK.

出版信息

Nanoscale. 2022 Mar 10;14(10):3658-3697. doi: 10.1039/d1nr05670k.


DOI:10.1039/d1nr05670k
PMID:35080544
Abstract

Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.

摘要

磁共振粒子成像(MPI)是一种新兴的示踪剂模态,可在外部振荡磁场存在的情况下,实时三维成像超顺磁氧化铁纳米颗粒(SPIONs)产生的非线性磁化。作为一种技术,它产生具有绝对定量的高度灵敏的无辐射断层图像。由于对比度高,以及在深度上信号衰减为零,因此在体内成像几乎没有任何限制。这些特性使得各种具有临床意义的生物医学应用成为可能。在这篇综述的开篇部分,引入了图像生成的原理,并详细比较了该技术与其他常见成像模态的基本特性。主要特点是介绍了针对改善成像性能而专门设计的 SPION 的最新文献,以及这项新兴技术在当前和有前途的生物医学应用中的发展,特别关注治疗学、细胞跟踪和灌注成像。最后,我们将讨论 MPI 临床转化的最新进展。由于 MPI 中的信号检测几乎完全依赖于所使用的 SPION 的特性,因此这项工作强调了定制合成工艺以生产具有特定特性的 SPION 的重要性,以及这如何影响特定应用中的成像和 MPI 的整体性能。

相似文献

[1]
Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

Nanoscale. 2022-3-10

[2]
A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation.

Br J Radiol. 2018-11

[3]
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.

Curr Opin Chem Biol. 2018-5-10

[4]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[5]
Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications.

Nanoscale. 2024-6-27

[6]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[7]
Magnetic Particle Imaging in Neurosurgery.

World Neurosurg. 2019-2-8

[8]
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.

ACS Nano. 2018-3-28

[9]
Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields.

Annu Rev Chem Biomol Eng. 2021-6-7

[10]
Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model.

ACS Nano. 2017-11-30

引用本文的文献

[1]
Proximity effects, exchange bias and magnetic relaxation in γ-FeO nanoparticles.

Nanoscale Adv. 2025-8-5

[2]
Development and characterization of magnetic polyethyleneimine-bamboo nanocellulose adsorbents for enhanced performance of dye pollutant removal.

Bioresour Bioprocess. 2025-8-8

[3]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[4]
Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging.

ACS Appl Nano Mater. 2025-7-16

[5]
Flame-Made Doped Iron Oxide Nanoparticles as Tracers for Magnetic Particle Imaging.

Chem Mater. 2025-5-20

[6]
Magnetic nanosheets: from iron oxide nanocubes to polydopamine embedded 2D clusters and their multi-purpose properties.

Nanoscale Horiz. 2025-4-7

[7]
Development of Iron Oxide Nanochains as a Sensitive Magnetic Particle Imaging Tracer for Cancer Detection.

ACS Appl Mater Interfaces. 2025-4-9

[8]
Magnetic particle imaging angiography of the femoral artery in a human cadaveric perfusion model.

Commun Med (Lond). 2025-3-13

[9]
Engineering Zn/Fe Mixed Metal Oxides with Tunable Structural and Magnetic Properties for Magnetic Particle Imaging.

Nanomaterials (Basel). 2024-12-7

[10]
A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging.

Tomography. 2024-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索