J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; email:
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA.
Annu Rev Chem Biomol Eng. 2021 Jun 7;12:163-185. doi: 10.1146/annurev-chembioeng-102720-015630. Epub 2021 Apr 15.
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
磁性纳米粒子因其生物相容性、可调节的表面化学性质以及在磁场作用下的驱动而受到生物医学应用的关注。磁性纳米粒子通过物理粒子旋转或内部偶极子重新取向对时变磁场做出响应,这可能导致信号产生或磁能转换为热能。这种动态磁化响应使其能够用作磁性粒子成像 (MPI) 的示踪剂,MPI 是一种新兴的生物医学成像方式,其信号定量于示踪剂质量,并且没有组织背景信号或信号衰减。磁能转换为热能促使其在纳米级热癌症治疗、药物释放的磁驱动以及冷冻保存器官的快速复温中得到应用。本综述介绍了磁性纳米粒子对时变磁场响应的基本概念,并介绍了该领域的最新进展,重点介绍了 MPI 和磁能转换为热能。