Suppr超能文献

利用机器学习评估慢性肾脏病患者微炎症在心血管事件中的作用。

Using Machine Learning to Evaluate the Role of Microinflammation in Cardiovascular Events in Patients With Chronic Kidney Disease.

机构信息

Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.

John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, London, United Kingdom.

出版信息

Front Immunol. 2022 Jan 10;12:796383. doi: 10.3389/fimmu.2021.796383. eCollection 2021.

Abstract

BACKGROUND

Lipid metabolism disorder, as one major complication in patients with chronic kidney disease (CKD), is tied to an increased risk for cardiovascular disease (CVD). Traditional lipid-lowering statins have been found to have limited benefit for the final CVD outcome of CKD patients. Therefore, the purpose of this study was to investigate the effect of microinflammation on CVD in statin-treated CKD patients.

METHODS

We retrospectively analysed statin-treated CKD patients from January 2013 to September 2020. Machine learning algorithms were employed to develop models of low-density lipoprotein (LDL) levels and CVD indices. A fivefold cross-validation method was employed against the problem of overfitting. The accuracy and area under the receiver operating characteristic (ROC) curve (AUC) were acquired for evaluation. The Gini impurity index of the predictors for the random forest (RF) model was ranked to perform an analysis of importance.

RESULTS

The RF algorithm performed best for both the LDL and CVD models, with accuracies of 82.27% and 74.15%, respectively, and is therefore the most suitable method for clinical data processing. The Gini impurity ranking of the LDL model revealed that hypersensitive C-reactive protein (hs-CRP) was highly relevant, whereas statin use and sex had the least important effects on the outcomes of both the LDL and CVD models. hs-CRP was the strongest predictor of CVD events.

CONCLUSION

Microinflammation is closely associated with potential CVD events in CKD patients, suggesting that therapeutic strategies against microinflammation should be implemented to prevent CVD events in CKD patients treated by statin.

摘要

背景

脂质代谢紊乱是慢性肾脏病(CKD)患者的主要并发症之一,与心血管疾病(CVD)风险增加有关。已发现传统的降脂他汀类药物对 CKD 患者的最终 CVD 结局获益有限。因此,本研究旨在探讨微炎症对他汀类药物治疗的 CKD 患者 CVD 的影响。

方法

我们回顾性分析了 2013 年 1 月至 2020 年 9 月接受他汀类药物治疗的 CKD 患者。采用机器学习算法建立 LDL 水平和 CVD 指标模型。采用五折交叉验证方法解决过拟合问题。获得准确性和接收者操作特征(ROC)曲线下面积(AUC)以进行评估。对随机森林(RF)模型的预测因子进行基尼杂质指数排名,以进行重要性分析。

结果

RF 算法在 LDL 和 CVD 模型中表现最佳,准确性分别为 82.27%和 74.15%,因此最适合用于临床数据处理。LDL 模型的基尼杂质排名显示,超敏 C 反应蛋白(hs-CRP)相关性很高,而他汀类药物的使用和性别对 LDL 和 CVD 模型的结果影响最小。hs-CRP 是 CVD 事件的最强预测因子。

结论

微炎症与 CKD 患者潜在的 CVD 事件密切相关,这表明应实施针对微炎症的治疗策略,以预防接受他汀类药物治疗的 CKD 患者的 CVD 事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4176/8784809/575cde004176/fimmu-12-796383-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验