Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
Neuroinformatics. 2021 Jul;19(3):493-514. doi: 10.1007/s12021-020-09496-2. Epub 2021 Jan 4.
Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers of important brain functions such as memory consolidation and decision making. Understanding their underlying mechanisms in healthy and pathological brain function and behaviour rely on accurate SPW-R detection. In this multidisciplinary study, we propose a novel, self-improving artificial intelligence (AI) detection method in the form of deep Recurrent Neural Networks (RNN) with Long Short-Term memory (LSTM) layers that can learn features of SPW-R events from raw, labeled input data. The approach contrasts conventional routines that typically relies on hand-crafted, heuristic feature extraction and often laborious manual curation. The algorithm is trained using supervised learning on hand-curated data sets with SPW-R events obtained under controlled conditions. The input to the algorithm is the local field potential (LFP), the low-frequency part of extracellularly recorded electric potentials from the CA1 region of the hippocampus. Its output predictions can be interpreted as time-varying probabilities of SPW-R events for the duration of the inputs. A simple thresholding applied to the output probabilities is found to identify times of SPW-R events with high precision. The non-causal, or bidirectional variant of the proposed algorithm demonstrates consistently better accuracy compared to the causal, or unidirectional counterpart. Reference implementations of the algorithm, named 'RippleNet', are open source, freely available, and implemented using a common open-source framework for neural networks (tensorflow.keras) and can be easily incorporated into existing data analysis workflows for processing experimental data.
海马体尖波涟漪 (SPW-R) 已被确定为记忆巩固和决策等重要大脑功能的关键生物标志物。要了解其在健康和病理性大脑功能和行为中的潜在机制,就需要准确地检测 SPW-R。在这项多学科研究中,我们提出了一种新颖的、自我改进的人工智能 (AI) 检测方法,采用带有长短时记忆 (LSTM) 层的深度递归神经网络 (RNN),可以从原始的、标记的输入数据中学习 SPW-R 事件的特征。这种方法与传统的方法形成对比,传统方法通常依赖于手工制作的、启发式的特征提取,而且往往需要繁琐的手动策管。该算法使用经过手工策管的数据集进行监督学习进行训练,这些数据集是在受控条件下获得的 SPW-R 事件。算法的输入是局部场电位 (LFP),即海马体 CA1 区细胞外记录的电潜力的低频部分。算法的输出预测可以解释为输入持续时间内 SPW-R 事件的时变概率。将简单的阈值应用于输出概率,可以发现 SPW-R 事件的时间具有很高的精度。与因果、单向对应物相比,所提出算法的非因果或双向变体始终显示出更高的准确性。该算法的参考实现,名为“RippleNet”,是开源的、免费提供的,并使用神经网络的常用开源框架 (tensorflow.keras) 实现,可以轻松地集成到现有的数据分析工作流程中,用于处理实验数据。