文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CT 结肠成像中的深度学习:区分癌前与良性结直肠息肉。

Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps.

机构信息

Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.

Radiologie München, Burgstraße 7, 80331, Munich, Germany.

出版信息

Eur Radiol. 2022 Jul;32(7):4749-4759. doi: 10.1007/s00330-021-08532-2. Epub 2022 Jan 26.


DOI:10.1007/s00330-021-08532-2
PMID:35083528
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9213389/
Abstract

OBJECTIVES: To investigate the differentiation of premalignant from benign colorectal polyps detected by CT colonography using deep learning. METHODS: In this retrospective analysis of an average risk colorectal cancer screening sample, polyps of all size categories and morphologies were manually segmented on supine and prone CT colonography images and classified as premalignant (adenoma) or benign (hyperplastic polyp or regular mucosa) according to histopathology. Two deep learning models SEG and noSEG were trained on 3D CT colonography image subvolumes to predict polyp class, and model SEG was additionally trained with polyp segmentation masks. Diagnostic performance was validated in an independent external multicentre test sample. Predictions were analysed with the visualisation technique Grad-CAM++. RESULTS: The training set consisted of 107 colorectal polyps in 63 patients (mean age: 63 ± 8 years, 40 men) comprising 169 polyp segmentations. The external test set included 77 polyps in 59 patients comprising 118 polyp segmentations. Model SEG achieved a ROC-AUC of 0.83 and 80% sensitivity at 69% specificity for differentiating premalignant from benign polyps. Model noSEG yielded a ROC-AUC of 0.75, 80% sensitivity at 44% specificity, and an average Grad-CAM++ heatmap score of ≥ 0.25 in 90% of polyp tissue. CONCLUSIONS: In this proof-of-concept study, deep learning enabled the differentiation of premalignant from benign colorectal polyps detected with CT colonography and the visualisation of image regions important for predictions. The approach did not require polyp segmentation and thus has the potential to facilitate the identification of high-risk polyps as an automated second reader. KEY POINTS: • Non-invasive deep learning image analysis may differentiate premalignant from benign colorectal polyps found in CT colonography scans. • Deep learning autonomously learned to focus on polyp tissue for predictions without the need for prior polyp segmentation by experts. • Deep learning potentially improves the diagnostic accuracy of CT colonography in colorectal cancer screening by allowing for a more precise selection of patients who would benefit from endoscopic polypectomy, especially for patients with polyps of 6-9 mm size.

摘要

目的:利用深度学习技术探究 CT 结肠成像检测到的癌前与良性结直肠息肉的区别。

方法:本回顾性分析纳入了平均风险结直肠癌筛查样本,对仰卧位和俯卧位 CT 结肠成像图像上所有大小和形态的息肉进行手动分割,并根据组织病理学将其归类为癌前(腺瘤)或良性(增生性息肉或正常黏膜)。将两个深度学习模型 SEG 和 noSEG 应用于 3D CT 结肠成像图像子体积,以预测息肉类别,模型 SEG 还可以使用息肉分割掩模进行训练。在独立的外部多中心测试样本中验证诊断性能。使用可视化技术 Grad-CAM++ 分析预测结果。

结果:训练集包含 63 名患者(平均年龄 63±8 岁,40 名男性)中的 107 个结直肠息肉,共 169 个息肉分割。外部测试集包含 59 名患者中的 77 个息肉,共 118 个息肉分割。模型 SEG 在区分癌前与良性息肉方面的 ROC-AUC 为 0.83,敏感度为 80%,特异性为 69%。模型 noSEG 的 ROC-AUC 为 0.75,敏感度为 80%,特异性为 44%,在 90%的息肉组织中平均 Grad-CAM++热图评分≥0.25。

结论:在这项概念验证研究中,深度学习实现了 CT 结肠成像检测到的癌前与良性结直肠息肉的区分,并对预测中重要的图像区域进行了可视化。该方法不需要息肉分割,因此有可能作为自动的第二读者来帮助识别高危息肉。

关键点:

  • 非侵入性深度学习图像分析可能有助于区分 CT 结肠成像扫描中发现的癌前与良性结直肠息肉。
  • 深度学习自主学习关注息肉组织进行预测,而无需专家事先进行息肉分割。
  • 深度学习通过更精确地选择需要内镜息肉切除术的患者,特别是对于 6-9mm 大小的息肉患者,从而有可能提高 CT 结肠成像在结直肠癌筛查中的诊断准确性。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b264/9213389/5c659e73a876/330_2021_8532_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b264/9213389/5c659e73a876/330_2021_8532_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b264/9213389/5c659e73a876/330_2021_8532_Fig2_HTML.jpg

相似文献

[1]
Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps.

Eur Radiol. 2022-7

[2]
Machine Learning-based Differentiation of Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an Asymptomatic Screening Population: A Proof-of-Concept Study.

Radiology. 2021-5

[3]
Diagnostic accuracy of ultra-low-dose CT colonography for the detection of colorectal polyps: a feasibility study.

Jpn J Radiol. 2022-8

[4]
Performance of computed tomographic colonography for the screening of colorectal polyp in acromegalic patients: a prospective study.

Arq Gastroenterol. 2009

[5]
A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography.

Int J Comput Assist Radiol Surg. 2021-1

[6]
Virtual colonography: identification and differentiation of colorectal lesions using multi-detector computed tomography.

Scand J Gastroenterol. 2005-4

[7]
Meta-analysis: computed tomographic colonography.

Ann Intern Med. 2005-4-19

[8]
Polyps: linear and volumetric measurement at CT colonography.

Radiology. 2006-12

[9]
Colorectal polyps: detection with low-dose multi-detector row helical CT colonography versus two sequential colonoscopies.

Radiology. 2005-12

[10]
CT colonography: size reduction of submerged colorectal polyps due to electronic cleansing and CT-window settings.

Eur Radiol. 2018-5-14

引用本文的文献

[1]
Research status and trends of deep learning in colorectal cancer (2011-2023): Bibliometric analysis and visualization.

World J Gastrointest Oncol. 2025-5-15

[2]
Multiclassification of Colorectal Polyps from Colonoscopy Images Using AI for Early Diagnosis.

Diagnostics (Basel). 2025-5-20

[3]
Validation of multiple deep learning models for colorectal tumor differentiation with endoscopic ultrasound images: a dual-center study.

J Gastrointest Oncol. 2025-4-30

[4]
Is the Transverse Colon Overlooked? Establishing a Comprehensive Colonoscopy Database from a Multicenter Cluster-Randomized Controlled Trial.

Diagnostics (Basel). 2025-2-28

[5]
Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Eur Radiol. 2025-1-25

[6]
PEDRA-EFB0: colorectal cancer prognostication using deep learning with patch embeddings and dual residual attention.

Med Biol Eng Comput. 2025-1-21

[7]
Achieving sub-millisievert CT colonography for accurate colorectal tumor detection using smart examination protocols: a prospective self-controlled study.

Abdom Radiol (NY). 2025-3

[8]
Examining feature extraction and classification modules in machine learning for diagnosis of low-dose computed tomographic screening-detected lesions.

J Med Imaging (Bellingham). 2024-7

[9]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[10]
The role of deep learning in diagnosing colorectal cancer.

Prz Gastroenterol. 2023

本文引用的文献

[1]
Imaging alternatives to colonoscopy: CT colonography and colon capsule. European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastrointestinal and Abdominal Radiology (ESGAR) Guideline - Update 2020.

Eur Radiol. 2021-5

[2]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

[3]
3D-GLCM CNN: A 3-Dimensional Gray-Level Co-Occurrence Matrix-Based CNN Model for Polyp Classification via CT Colonography.

IEEE Trans Med Imaging. 2020-6

[4]
Colorectal Cancer: Cost-effectiveness of Colonoscopy versus CT Colonography Screening with Participation Rates and Costs.

Radiology. 2018-2-27

[5]
Colorectal Cancer Screening: Recommendations for Physicians and Patients From the U.S. Multi-Society Task Force on Colorectal Cancer.

Gastroenterology. 2017-6-9

[6]
Serrated Polyps at CT Colonography: Prevalence and Characteristics of the Serrated Polyp Spectrum.

Radiology. 2016-8

[7]
Trends in Adenoma Detection Rates During the First 10 Years of the German Screening Colonoscopy Program.

Gastroenterology. 2015-4-22

[8]
Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography.

Int J Comput Assist Radiol Surg. 2014-11

[9]
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.

J Digit Imaging. 2013-12

[10]
The Medical Imaging Interaction Toolkit: challenges and advances : 10 years of open-source development.

Int J Comput Assist Radiol Surg. 2013-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索