Suppr超能文献

CT结肠成像中人工智能辅助鉴别结直肠腺瘤性和非腺瘤性息肉对放射科医生治疗管理的影响。

Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

作者信息

Grosu Sergio, Fabritius Matthias P, Winkelmann Michael, Puhr-Westerheide Daniel, Ingenerf Maria, Maurus Stefan, Graser Anno, Schulz Christian, Knösel Thomas, Cyran Clemens C, Ricke Jens, Kazmierczak Philipp M, Ingrisch Michael, Wesp Philipp

机构信息

Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.

Department for Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Kempten, Robert-Weixler-Straße 50, 87439, Kempten, Germany.

出版信息

Eur Radiol. 2025 Jan 25. doi: 10.1007/s00330-025-11371-0.

Abstract

OBJECTIVES

Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

MATERIALS AND METHODS

Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection. After a primary unassisted reading based on current guidelines, a second reading with access to the classification of a radiomics-based random-forest AI-model labelling each polyp as "non-adenomatous" or "adenomatous" was performed. Performance was evaluated using polyp histopathology as the reference standard.

RESULTS

77 polyps in 59 patients comprising 118 polyp image series (47% supine position, 53% prone position) were evaluated unassisted and AI-assisted by five independent board-certified radiologists, resulting in a total of 1180 readings (subsequent polypectomy: yes or no). AI-assisted readings had higher accuracy (76% +/- 1% vs. 84% +/- 1%), sensitivity (78% +/- 6% vs. 85% +/- 1%), and specificity (73% +/- 8% vs. 82% +/- 2%) in selecting polyps eligible for polypectomy (p < 0.001). Inter-reader agreement was improved in the AI-assisted readings (Fleiss' kappa 0.69 vs. 0.92).

CONCLUSION

AI-based characterisation of colorectal polyps at CT colonography as a second reader might enable a more precise selection of polyps eligible for subsequent endoscopic resection. However, further studies are needed to confirm this finding and histopathologic polyp evaluation is still mandatory.

KEY POINTS

Question This is the first study evaluating the impact of AI-based polyp classification in CT colonography on radiologists' therapy management. Findings Compared with unassisted reading, AI-assisted reading had higher accuracy, sensitivity, and specificity in selecting polyps eligible for polypectomy. Clinical relevance Integrating an AI tool for colorectal polyp classification in CT colonography could further improve radiologists' therapy recommendations.

摘要

目的

与非腺瘤性增生性大肠息肉不同,腺瘤性大肠息肉需要进行内镜切除。本研究旨在评估在CT结肠成像中人工智能(AI)辅助鉴别腺瘤性和非腺瘤性大肠息肉对放射科医生治疗管理的影响。

材料与方法

五位获得委员会认证的放射科医生回顾性评估了包含各种大小和形态大肠息肉的CT结肠成像图像,并确定所显示的息肉是否需要内镜切除。在基于当前指南进行初次无辅助阅读后,进行了第二次阅读,此次可查看基于影像组学的随机森林AI模型的分类结果,该模型将每个息肉标记为“非腺瘤性”或“腺瘤性”。以息肉组织病理学作为参考标准评估性能。

结果

五位独立的获得委员会认证的放射科医生对59例患者中的77个息肉(包括118个息肉图像系列,47%为仰卧位,53%为俯卧位)进行了无辅助和AI辅助评估,共产生1180次阅读结果(后续息肉切除术:是或否)。在选择适合息肉切除术的息肉方面,AI辅助阅读具有更高的准确性(76%±1%对84%±1%)、敏感性(78%±6%对85%±1%)和特异性(73%±8%对82%±2%)(p<0.001)。AI辅助阅读中的阅片者间一致性得到改善(Fleiss卡方值0.69对0.92)。

结论

在CT结肠成像中,将基于AI的大肠息肉特征作为第二位阅片者,可能有助于更精确地选择适合后续内镜切除的息肉。然而,需要进一步研究来证实这一发现,并且息肉的组织病理学评估仍然是必不可少的。

关键点

问题 这是第一项评估CT结肠成像中基于AI的息肉分类对放射科医生治疗管理影响的研究。发现 与无辅助阅读相比,AI辅助阅读在选择适合息肉切除术的息肉方面具有更高的准确性、敏感性和特异性。临床意义 在CT结肠成像中整合用于大肠息肉分类的AI工具可进一步改善放射科医生的治疗建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验