Suppr超能文献

验证炼油行业智能制造异常情况预测模型。

Validating an abnormal situation prediction model for smart manufacturing in the oil refining industry.

机构信息

The Department of Systems Science and Industrial Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.

The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, 310 Leonhard Building, University Park, PA, 16802, USA.

出版信息

Appl Ergon. 2022 May;101:103697. doi: 10.1016/j.apergo.2022.103697. Epub 2022 Jan 29.

Abstract

Human beings play an important role in a smart manufacturing economy. The repetitive and cognitive demanding task operations of smart manufacturing require the development of system models for measuring and predicting human performance, including oil refinery monitoring tasks. The main objective of this research was to validate the generalizability of a mathematical model for the prediction of refinery operators' detection of abnormal events. Moreover, we examined operators' visual behaviors in response to abnormal situations at different ages and with different task loads, task complexities, and input devices. We found that participants had lower mean fixation durations, total fixation numbers, and fixation/saccade ratios when they were in the condition of a touchscreen device. Moreover, we found that older adults had higher mean saccade durations and saccade amplitudes when they were in the condition of a touchscreen device. Finally, the statistical model borrowed from our prior paper was found to be generalizable to different task loads and age groups for the prediction of operators' detection of abnormal events. Our results showed that visual behaviors can indicate specific internal states of participants, including their cognitive workload, attention, and situation awareness in a real-time manner. The findings provide additional support for the value of using visual behavior to predict responsiveness of oil refinery operators and for future applications of smart manufacturing monitoring systems.

摘要

人类在智能制造经济中扮演着重要的角色。智能制造的重复性和认知要求高的任务操作需要开发用于测量和预测人类绩效的系统模型,包括炼油厂监测任务。本研究的主要目的是验证用于预测炼油厂操作人员检测异常事件的数学模型的可推广性。此外,我们研究了不同年龄、不同任务负荷、任务复杂度和输入设备下操作人员对异常情况的视觉行为。我们发现,参与者在使用触摸屏设备时,平均注视持续时间、总注视次数和注视/扫视比都较低。此外,我们发现,在使用触摸屏设备时,年长的参与者的平均扫视持续时间和扫视幅度较大。最后,我们发现,从我们之前的论文中借用的统计模型可以推广到不同的任务负荷和年龄组,以预测操作人员对异常事件的检测。我们的研究结果表明,视觉行为可以实时指示参与者的特定内部状态,包括他们的认知负荷、注意力和情境意识。这些发现为使用视觉行为来预测炼油厂操作人员的响应能力以及未来智能制造监控系统的应用提供了更多的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验