Suppr超能文献

MS-IDF:一种基于窄质量缺陷过滤的基于化学同位素标记的内源性代谢物非靶向鉴定的软件工具。

MS-IDF: A Software Tool for Nontargeted Identification of Endogenous Metabolites after Chemical Isotope Labeling Based on a Narrow Mass Defect Filter.

机构信息

Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.

Department of Pharmacy, Xiamen Xianyue Hospital, Xiamen 361012, China.

出版信息

Anal Chem. 2022 Feb 22;94(7):3194-3202. doi: 10.1021/acs.analchem.1c04719. Epub 2022 Feb 1.

Abstract

Chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) is an emerging metabolomic strategy for the quantification and characterization of small molecular compounds in biological samples. However, its subsequent data analysis is not straightforward due to a large amount of data produced and interference of biological matrices. In order to improve the efficiency of searching and identification of target endogenous metabolites, a new software tool for nontargeted metabolomics data processing called MS-IDF was developed based on the principle of a narrow mass defect filter. The developed tool provided two function modules, including IsoFinder and MDFinder. The IsoFinder function module applied a conventional peak extraction method by using a fixed mass differences between the heavy and light labels and by the alignment of chromatographic retention time (RT). On the other hand, MDFinder was designed to incorporate the accurate mass defect differences between or among stable isotopes in the peak extraction process. By setting an appropriate filter interval, the target metabolites can be efficiently screened out while eliminating interference. Notably, the present results showed that the efficiency in compound identification using the new MDFinder module was nearly doubled as compared to the conventional IsoFinder method (an increase from 259 to 423 compounds). The Matlab codes of the developed MS-IDF software are available from github at https://github.com/jydong2018/MS_IDF. Based on the MS-IDF software tool, a novel and effective approach from nontargeted to targeted metabolomics research was developed and applied to the exploration of potential primary amine biomarkers in patients with schizophrenia. With this approach, potential biomarkers, including ,-dimethylglycine, -adenosine-l-methionine, dl-homocysteine, and spermidine, were discovered.

摘要

化学同位素标记液相色谱质谱联用(LC-MS)是一种新兴的代谢组学策略,用于定量和鉴定生物样品中的小分子化合物。然而,由于产生了大量的数据和生物基质的干扰,其后续数据分析并不简单。为了提高目标内源性代谢物搜索和鉴定的效率,根据窄质量缺陷滤波器的原理,开发了一种名为 MS-IDF 的非靶向代谢组学数据分析新软件工具。开发的工具提供了两个功能模块,包括 IsoFinder 和 MDFinder。IsoFinder 功能模块通过使用重标记和轻标记之间固定的质量差异以及色谱保留时间(RT)的对齐来应用常规的峰提取方法。另一方面,MDFinder 旨在将稳定同位素之间或同位素内的精确质量缺陷差异纳入峰提取过程中。通过设置适当的滤波器间隔,可以有效地筛选出目标代谢物,同时消除干扰。值得注意的是,目前的结果表明,与传统的 IsoFinder 方法相比,新的 MDFinder 模块在化合物鉴定方面的效率提高了近两倍(从 259 种增加到 423 种)。开发的 MS-IDF 软件的 Matlab 代码可在 https://github.com/jydong2018/MS_IDF 上从 github 获得。基于 MS-IDF 软件工具,开发并应用了一种从非靶向到靶向代谢组学研究的新方法,用于探索精神分裂症患者潜在的初级胺生物标志物。通过这种方法,发现了潜在的生物标志物,包括二甲氨基乙醇、腺苷甲硫氨酸、同型半胱氨酸和亚精胺。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验