Suppr超能文献

一种基于急动度的算法ACCEL,用于根据手臂加速度准确分类睡眠-觉醒状态。

A jerk-based algorithm ACCEL for the accurate classification of sleep-wake states from arm acceleration.

作者信息

Ode Koji L, Shi Shoi, Katori Machiko, Mitsui Kentaro, Takanashi Shin, Oguchi Ryo, Aoki Daisuke, Ueda Hiroki R

机构信息

Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-0871, Japan.

出版信息

iScience. 2022 Jan 1;25(2):103727. doi: 10.1016/j.isci.2021.103727. eCollection 2022 Feb 18.

Abstract

Arm acceleration data have been used to measure sleep-wake rhythmicity. Although several methods have been developed for the accurate classification of sleep-wake episodes, a method with both high sensitivity and specificity has not been fully established. In this study, we developed an algorithm, named ACceleration-based Classification and Estimation of Long-term sleep-wake cycles (ACCEL) that classifies sleep and wake episodes using only raw accelerometer data, without relying on device-specific functions. The algorithm uses a derivative of triaxial acceleration (jerk), which can reduce individual differences in the variability of acceleration data. Applying a machine learning algorithm to the jerk data achieved sleep-wake classification with a high sensitivity (>90%) and specificity (>80%). A jerk-based analysis also succeeded in recording periodic activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a useful method for large-scale sleep measurement using simple accelerometers in real-world settings.

摘要

手臂加速度数据已被用于测量睡眠-觉醒节律性。尽管已经开发了几种用于准确分类睡眠-觉醒阶段的方法,但尚未完全建立一种兼具高灵敏度和特异性的方法。在本研究中,我们开发了一种算法,名为基于加速度的长期睡眠-觉醒周期分类与估计(ACCEL),该算法仅使用原始加速度计数据对睡眠和觉醒阶段进行分类,而不依赖于特定设备的功能。该算法使用三轴加速度的导数(加加速度),这可以减少加速度数据变异性中的个体差异。将机器学习算法应用于加加速度数据实现了具有高灵敏度(>90%)和特异性(>80%)的睡眠-觉醒分类。基于加加速度的分析还成功记录了与脉搏波一致的周期性活动。因此,ACCEL算法将成为在现实环境中使用简单加速度计进行大规模睡眠测量的一种有用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0c/8784328/8c3df1b8e2ff/fx1.jpg

相似文献

5
Adaptive sleep-wake discrimination for wearable devices.可穿戴设备的自适应睡眠-觉醒判别。
IEEE Trans Biomed Eng. 2011 Apr;58(4):920-6. doi: 10.1109/TBME.2010.2097261. Epub 2010 Dec 17.

引用本文的文献

9
Recent Progress in Long-Term Sleep Monitoring Technology.近期长时睡眠监测技术的进展
Biosensors (Basel). 2023 Mar 17;13(3):395. doi: 10.3390/bios13030395.

本文引用的文献

8
The economic cost of inadequate sleep.睡眠不足的经济成本。
Sleep. 2018 Aug 1;41(8). doi: 10.1093/sleep/zsy083.
9
Dynamics and Ultradian Structure of Human Sleep in Real Life.真实生活中人类睡眠的动力学和超日周期结构。
Curr Biol. 2018 Jan 8;28(1):49-59.e5. doi: 10.1016/j.cub.2017.11.063. Epub 2017 Dec 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验