Suppr超能文献

利用长短期记忆网络的后验概率通过多个加速度计来表征舞蹈行为。

Use of posterior probabilities from a long short-term memory network for characterizing dance behavior with multiple accelerometers.

作者信息

McCullough Aston K

机构信息

Laboratory for the Scientific Study of Dance, Center for Cognitive & Brain Health, Northeastern University Boston, Boston, MA, USA.

Department of Physical Therapy, Movement & Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University Boston, Boston, MA, USA.

出版信息

J Alzheimers Dis. 2025 Jun;105(4):1069-1084. doi: 10.1177/13872877251336482. Epub 2025 May 4.

Abstract

BackgroundDancing may be protective for cognitive health among adults with mild cognitive impairment, Alzheimer's disease or dementia; however, additional methods are needed to characterize motor behavior quality in studies of dance.ObjectiveTo determine how long each of a range of motor behaviors should be observed to optimize the reliability of "dance-like state" (DLS) scores-a novel metric for characterizing motor behavior quality in reference to free-form dancing using accelerometry.MethodsAdults ( = 41) wore five triaxial accelerometers (on both wrists, both ankles, and the waist) while engaged in sitting, standing, walking, and free-form dancing in a laboratory. Accelerometer data were used as predictors in a long short-term memory (LSTM) network, where the target was the binary coded observed behavior (dancing/not dancing) over time. LSTM accuracy was evaluated, and the Spearman-Brown (SB) Prophecy formula was used to determine the number of 1-min observational periods required to reach sufficient reliability ( ≥ 0.80) when using DLS scores.ResultsThe LSTM network trained with accelerometer data that were collected using all five devices showed very good to excellent classification accuracy (95% confidence interval: 89.1% to 94.0%) in the task of recognizing free-form dance behavior. SB results showed LSTM-generated posterior probabilities are reliable ( > 0.80) when averaged over ≥2 min periods. DLS scores were significantly correlated with age, prior dance training, height, body mass, music tempo and mode, gait speed, and energy expenditure.ConclusionsDLS scores can be used to characterize motor behavior quality. Additional research on motor behavior quality in relation to cognitive health is needed.

摘要

背景

舞蹈可能对患有轻度认知障碍、阿尔茨海默病或痴呆症的成年人的认知健康具有保护作用;然而,在舞蹈研究中需要额外的方法来表征运动行为质量。

目的

确定应观察一系列运动行为中的每一种多长时间,以优化“舞蹈样状态”(DLS)评分的可靠性——这是一种使用加速度计参照自由形式舞蹈来表征运动行为质量的新指标。

方法

41名成年人在实验室中进行坐、站、行走和自由形式舞蹈时,佩戴五个三轴加速度计(两只手腕、两只脚踝和腰部各一个)。加速度计数据被用作长短期记忆(LSTM)网络中的预测因子,目标是随时间二进制编码的观察到的行为(跳舞/不跳舞)。评估LSTM的准确性,并使用斯皮尔曼 - 布朗(SB)预测公式确定在使用DLS评分时达到足够可靠性(≥0.80)所需的1分钟观察期数量。

结果

用所有五个设备收集的加速度计数据训练的LSTM网络在识别自由形式舞蹈行为的任务中显示出非常好到极好的分类准确性(95%置信区间:89.1%至94.0%)。SB结果表明,当在≥2分钟的时间段内平均时,LSTM生成的后验概率是可靠的(>0.80)。DLS评分与年龄、先前的舞蹈训练、身高、体重、音乐节奏和模式、步态速度以及能量消耗显著相关。

结论

DLS评分可用于表征运动行为质量。需要对与认知健康相关的运动行为质量进行更多研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbaa/12231835/695d8baf1ece/10.1177_13872877251336482-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验