Berkeley Institute for Data Science, University of California, Berkeley, 94720, USA.
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, USA.
Sci Data. 2022 Feb 2;9(1):32. doi: 10.1038/s41597-022-01119-6.
Fiber-reinforced ceramic-matrix composites are advanced, temperature resistant materials with applications in aerospace engineering. Their analysis involves the detection and separation of fibers, embedded in a fiber bed, from an imaged sample. Currently, this is mostly done using semi-supervised techniques. Here, we present an open, automated computational pipeline to detect fibers from a tomographically reconstructed X-ray volume. We apply our pipeline to a non-trivial dataset by Larson et al. To separate the fibers in these samples, we tested four different architectures of convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients reaching up to 98%, showing that these automated approaches can match human-supervised methods, in some cases separating fibers that human-curated algorithms could not find. The software written for this project is open source, released under a permissive license, and can be freely adapted and re-used in other domains.
纤维增强陶瓷基复合材料是一种先进的耐高温材料,在航空航天工程中有应用。对它们的分析包括从纤维床上嵌入的纤维图像样本中检测和分离纤维。目前,这主要是使用半监督技术来完成的。在这里,我们提出了一种开放的、自动化的计算流程,用于从层析重建的 X 射线体中检测纤维。我们将我们的管道应用于 Larson 等人提供的一个非平凡数据集。为了在这些样本中分离纤维,我们测试了卷积神经网络的四种不同架构。在将我们的神经网络方法与半监督方法进行比较时,我们获得了高达 98%的 Dice 和 Matthews 系数,这表明这些自动化方法可以与人工监督方法相匹配,在某些情况下可以分离出人工算法无法找到的纤维。为这个项目编写的软件是开源的,使用宽松的许可证发布,可以在其他领域自由改编和重复使用。