文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synthetic Scientific Image Generation with VAE, GAN, and Diffusion Model Architectures.

作者信息

Sordo Zineb, Chagnon Eric, Hu Zixi, Donatelli Jeffrey J, Andeer Peter, Nico Peter S, Northen Trent, Ushizima Daniela

机构信息

Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

J Imaging. 2025 Jul 26;11(8):252. doi: 10.3390/jimaging11080252.


DOI:10.3390/jimaging11080252
PMID:40863462
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12387873/
Abstract

Generative AI (genAI) has emerged as a powerful tool for synthesizing diverse and complex image data, offering new possibilities for scientific imaging applications. This review presents a comprehensive comparative analysis of leading generative architectures, ranging from Variational Autoencoders (VAEs) to Generative Adversarial Networks (GANs) on through to Diffusion Models, in the context of scientific image synthesis. We examine each model's foundational principles, recent architectural advancements, and practical trade-offs. Our evaluation, conducted on domain-specific datasets including microCT scans of rocks and composite fibers, as well as high-resolution images of plant roots, integrates both quantitative metrics (SSIM, LPIPS, FID, CLIPScore) and expert-driven qualitative assessments. Results show that GANs, particularly StyleGAN, produce images with high perceptual quality and structural coherence. Diffusion-based models for inpainting and image variation, such as DALL-E 2, delivered high realism and semantic alignment but generally struggled in balancing visual fidelity with scientific accuracy. Importantly, our findings reveal limitations of standard quantitative metrics in capturing scientific relevance, underscoring the need for domain-expert validation. We conclude by discussing key challenges such as model interpretability, computational cost, and verification protocols, and discuss future directions where generative AI can drive innovation in data augmentation, simulation, and hypothesis generation in scientific research.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7e608179d809/jimaging-11-00252-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/54a3904141ac/jimaging-11-00252-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/93d4b75f95e1/jimaging-11-00252-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/9ac8eab8039f/jimaging-11-00252-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/828cf2bc31b2/jimaging-11-00252-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/abff7636ac94/jimaging-11-00252-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/cb0fc424823c/jimaging-11-00252-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/38c303c38842/jimaging-11-00252-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/84bee3f954a8/jimaging-11-00252-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/aa293e719f02/jimaging-11-00252-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7da3015a6227/jimaging-11-00252-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fc40336c7486/jimaging-11-00252-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/9dd1686f8e92/jimaging-11-00252-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/a23c30b35409/jimaging-11-00252-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/b8723951862f/jimaging-11-00252-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/1d9b3d1ea131/jimaging-11-00252-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/35f478177864/jimaging-11-00252-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/90b3317ce483/jimaging-11-00252-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fe30b1b17e58/jimaging-11-00252-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fbcbf3b14629/jimaging-11-00252-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7ddf467529d7/jimaging-11-00252-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/21217e05738b/jimaging-11-00252-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7e608179d809/jimaging-11-00252-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/54a3904141ac/jimaging-11-00252-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/93d4b75f95e1/jimaging-11-00252-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/9ac8eab8039f/jimaging-11-00252-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/828cf2bc31b2/jimaging-11-00252-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/abff7636ac94/jimaging-11-00252-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/cb0fc424823c/jimaging-11-00252-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/38c303c38842/jimaging-11-00252-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/84bee3f954a8/jimaging-11-00252-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/aa293e719f02/jimaging-11-00252-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7da3015a6227/jimaging-11-00252-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fc40336c7486/jimaging-11-00252-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/9dd1686f8e92/jimaging-11-00252-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/a23c30b35409/jimaging-11-00252-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/b8723951862f/jimaging-11-00252-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/1d9b3d1ea131/jimaging-11-00252-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/35f478177864/jimaging-11-00252-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/90b3317ce483/jimaging-11-00252-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fe30b1b17e58/jimaging-11-00252-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/fbcbf3b14629/jimaging-11-00252-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7ddf467529d7/jimaging-11-00252-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/21217e05738b/jimaging-11-00252-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb0/12387873/7e608179d809/jimaging-11-00252-g015.jpg

相似文献

[1]
Synthetic Scientific Image Generation with VAE, GAN, and Diffusion Model Architectures.

J Imaging. 2025-7-26

[2]
A comprehensive comparative study of generative adversarial network architectures for synthetic computed tomography generation in the abdomen.

Med Phys. 2025-8

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[5]
Generative AI for synthetic data across multiple medical modalities: A systematic review of recent developments and challenges.

Comput Biol Med. 2025-5

[6]
Super-resolution CBCT on a new generation flat panel imager of a C-arm gantry linear accelerator.

Med Phys. 2025-7

[7]
Structural semantic-guided MR synthesis from PET images via a dual cross-attention mechanism.

Med Phys. 2025-7

[8]
Sparse-view spectral CT reconstruction via a coupled subspace representation and score-based generative model.

Quant Imaging Med Surg. 2025-6-6

[9]
Noise-aware system generative model (NASGM): positron emission tomography (PET) image simulation framework with observer validation studies.

Med Phys. 2025-7

[10]
Systematic review of generative adversarial networks (GANs) in cell microscopy: Trends, practices, and impact on image augmentation.

PLoS One. 2025-6-24

本文引用的文献

[1]
Larger and more instructable language models become less reliable.

Nature. 2024-10

[2]
RhizoNet segments plant roots to assess biomass and growth for enabling self-driving labs.

Sci Rep. 2024-6-5

[3]
High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination.

IEEE Trans Image Process. 2024

[4]
Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis.

IEEE J Biomed Health Inform. 2024-7

[5]
Adaptive diffusion priors for accelerated MRI reconstruction.

Med Image Anal. 2023-8

[6]
Foundation models for generalist medical artificial intelligence.

Nature. 2023-4

[7]
A reusable neural network pipeline for unidirectional fiber segmentation.

Sci Data. 2022-2-2

[8]
Deep learning for Alzheimer's disease: Mapping large-scale histological tau protein for neuroimaging biomarker validation.

Neuroimage. 2022-3

[9]
Cric searchable image database as a public platform for conventional pap smear cytology data.

Sci Data. 2021-6-10

[10]
Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding.

J Neurosci Methods. 2017-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索