Suppr超能文献

基于 3D 卷积神经网络的分割技术,获取小鼠胚胎发生过程中细胞核的定量标准。

3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis.

机构信息

Department of Biosciences and Informatics, Keio University, Kanagawa, 223-8522, Japan.

Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan.

出版信息

NPJ Syst Biol Appl. 2020 Oct 20;6(1):32. doi: 10.1038/s41540-020-00152-8.

Abstract

During embryogenesis, cells repeatedly divide and dynamically change their positions in three-dimensional (3D) space. A robust and accurate algorithm to acquire the 3D positions of the cells would help to reveal the mechanisms of embryogenesis. To acquire quantitative criteria of embryogenesis from time-series 3D microscopic images, image processing algorithms such as segmentation have been applied. Because the cells in embryos are considerably crowded, an algorithm to segment individual cells in detail and accurately is needed. To quantify the nuclear region of every cell from a time-series 3D fluorescence microscopic image of living cells, we developed QCANet, a convolutional neural network-based segmentation algorithm for 3D fluorescence bioimages. We demonstrated that QCANet outperformed 3D Mask R-CNN, which is currently considered as the best algorithm of instance segmentation. We showed that QCANet can be applied not only to developing mouse embryos but also to developing embryos of two other model species. Using QCANet, we were able to extract several quantitative criteria of embryogenesis from 11 early mouse embryos. We showed that the extracted criteria could be used to evaluate the differences between individual embryos. This study contributes to the development of fundamental approaches for assessing embryogenesis on the basis of extracted quantitative criteria.

摘要

在胚胎发生过程中,细胞会反复分裂,并在三维(3D)空间中动态改变位置。获取细胞 3D 位置的强大而准确的算法将有助于揭示胚胎发生的机制。为了从时间序列 3D 显微镜图像中获取胚胎发生的定量标准,已经应用了图像处理算法,如分割。由于胚胎中的细胞非常拥挤,因此需要一种能够详细而准确地分割单个细胞的算法。为了从活细胞的时间序列 3D 荧光显微镜图像中量化每个细胞的核区域,我们开发了基于卷积神经网络的 3D 荧光生物图像分割算法 QCANet。我们证明了 QCANet 优于 3D Mask R-CNN,后者目前被认为是实例分割的最佳算法。我们表明,QCANet 不仅可以应用于发育中的小鼠胚胎,还可以应用于其他两种模式生物的胚胎发育。使用 QCANet,我们能够从 11 个早期小鼠胚胎中提取出几个胚胎发生的定量标准。我们表明,提取的标准可用于评估个体胚胎之间的差异。这项研究有助于在提取的定量标准的基础上开发评估胚胎发生的基本方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ddb/7575569/351d89af86a0/41540_2020_152_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验