Department of Neurology and Stroke Center, The First Hospital of China Medical University, Shenyang, China.
Department of Geriatrics, The First Hospital of China Medical University, Shenyang, China.
PeerJ. 2022 Jan 18;10:e12768. doi: 10.7717/peerj.12768. eCollection 2022.
Glioblastoma (GBM) is the most common malignant tumor in the central system with a poor prognosis. Due to the complexity of its molecular mechanism, the recurrence rate and mortality rate of GBM patients are still high. Therefore, there is an urgent need to screen GBM biomarkers to prove the therapeutic effect and improve the prognosis.
We extracted data from GBM patients from the Gene Expression Integration Database (GEO), analyzed differentially expressed genes in GEO and identified key modules by weighted gene co-expression network analysis (WGCNA). GSE145128 data was obtained from the GEO database, and the darkturquoise module was determined to be the most relevant to the GBM prognosis by WGCNA ( = - 0.62, = 0.01). We performed enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the interaction activity in the selected modules. Then Kaplan-Meier survival curve analysis was used to extract genes closely related to GBM prognosis. We used Kaplan-Meier survival curves to analyze the 139 genes in the darkturquoise module, identified four genes (DARS/GDI2/P4HA2/TRUB1) associated with prognostic GBM. Low expression of DARS/GDI2/TRUB1 and high expression of P4HA2 had a poor prognosis. Finally, we used tumor genome map (TCGA) data, verified the characteristics of hub genes through Co-expression analysis, Drug sensitivity analysis, TIMER database analysis and GSVA analysis. We downloaded the data of GBM from the TCGA database, the results of co-expression analysis showed that DARS/GDI2/P4HA2/TRUB1 could regulate the development of GBM by affecting genes such as CDC73/CDC123/B4GALT1/CUL2. Drug sensitivity analysis showed that genes are involved in many classic Cancer-related pathways including TSC/mTOR, RAS/MAPK.TIMER database analysis showed DARS expression is positively correlated with tumor purity (cor = 0.125, p = 1.07e-02)), P4HA2 expression is negatively correlated with tumor purity (cor =-0.279, p = 6.06e-09). Finally, GSVA analysis found that DARS/GDI2/P4HA2/TRUB1 gene sets are closely related to the occurrence of cancer.
We used two public databases to identify four valuable biomarkers for GBM prognosis, namely DARS/GDI2/P4HA2/TRUB1, which have potential clinical application value and can be used as prognostic markers for GBM.
胶质母细胞瘤(GBM)是中枢系统中最常见的恶性肿瘤,预后较差。由于其分子机制复杂,GBM 患者的复发率和死亡率仍然很高。因此,迫切需要筛选 GBM 生物标志物以验证治疗效果并改善预后。
我们从基因表达综合数据库(GEO)中提取 GBM 患者的数据,对 GEO 中的差异表达基因进行分析,并通过加权基因共表达网络分析(WGCNA)鉴定关键模块。从 GEO 数据库中获得 GSE145128 数据,通过 WGCNA 确定深蓝色模块与 GBM 预后最相关(= -0.62,= 0.01)。我们对基因本体论(GO)和京都基因与基因组百科全书(KEGG)进行富集分析,以揭示所选模块中的相互作用活性。然后使用 Kaplan-Meier 生存曲线分析提取与 GBM 预后密切相关的基因。我们使用 Kaplan-Meier 生存曲线分析深蓝色模块中的 139 个基因,鉴定出与预后相关的四个基因(DARS/GDI2/P4HA2/TRUB1)。DARS/GDI2/TRUB1 低表达和 P4HA2 高表达与预后不良相关。最后,我们使用肿瘤基因组图谱(TCGA)数据,通过共表达分析、药物敏感性分析、TIMER 数据库分析和 GSVA 分析验证了枢纽基因的特征。我们从 TCGA 数据库下载 GBM 数据,共表达分析结果表明,DARS/GDI2/P4HA2/TRUB1 可以通过影响 CDC73/CDC123/B4GALT1/CUL2 等基因来调节 GBM 的发生。药物敏感性分析表明,这些基因参与了许多经典的癌症相关途径,包括 TSC/mTOR、RAS/MAPK。TIMER 数据库分析表明 DARS 表达与肿瘤纯度呈正相关(cor = 0.125,p = 1.07e-02),P4HA2 表达与肿瘤纯度呈负相关(cor = -0.279,p = 6.06e-09)。最后,GSVA 分析发现 DARS/GDI2/P4HA2/TRUB1 基因集与癌症的发生密切相关。
我们使用两个公共数据库鉴定了四个有价值的 GBM 预后生物标志物,即 DARS/GDI2/P4HA2/TRUB1,它们具有潜在的临床应用价值,可以作为 GBM 的预后标志物。