文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近红外荧光纳米平台用于胶质母细胞瘤的靶向术中切除和化学治疗。

Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma.

机构信息

Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

出版信息

ACS Nano. 2020 Jul 28;14(7):8392-8408. doi: 10.1021/acsnano.0c02509. Epub 2020 Jun 23.


DOI:10.1021/acsnano.0c02509
PMID:32551496
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7438253/
Abstract

Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.

摘要

尽管在提高胶质母细胞瘤(GBM)治疗效果方面做出了巨大努力,但 GBM 仍然是最致命的癌症之一。有效的 GBM 治疗需要术中对肿瘤进行敏感的可视化,并在术后有效输送化疗药物。不幸的是,GBM 的弥漫性和浸润性限制了 GBM 肿瘤的检测,而目前的术中可视化方法限制了完全切除肿瘤。此外,尽管化疗常用于消除手术后残留的任何癌变组织,但大多数化疗药物不能有效地穿过血脑屏障(BBB)或进入 GBM 肿瘤。因此,GBM 的治疗选择有限,复发率高,需要改进其在手术和治疗过程中的完全可视化方法。在此,我们报告了一种用于近红外荧光(NIRF)的荧光纳米颗粒平台,用于基于肿瘤边界可视化和图像引导的递送至 GBM 肿瘤的药物输送。我们的纳米平台基于 FDA 批准的磁共振成像敏感超顺磁性氧化铁纳米颗粒 ferumoxytol(FMX),该纳米颗粒与 hepthamethine cyanine(HMC)偶联,HMC 是一种 NIRF 配体,特异性靶向在 GBM 中过表达的有机阴离子转运多肽。我们已经证明,HMC-FMX 纳米颗粒可以穿过 BBB 并在原位 GBM 小鼠模型中选择性地积聚在肿瘤中,从而能够基于 NIRF 可视化浸润性肿瘤组织。此外,HMC-FMX 可以封装化疗药物,如紫杉醇或顺铂,并将这些药物递送至 GBM 肿瘤中,从而缩小肿瘤大小并提高存活率。综上所述,这些观察结果表明,HMC-FMX 是一种有前途的 GBM 手术可视化和药物输送的纳米探针。

相似文献

[1]
Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma.

ACS Nano. 2020-7-28

[2]
Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes.

Nanotheranostics. 2021

[3]
In vivo delineation of glioblastoma by targeting tumor-associated macrophages with near-infrared fluorescent silica coated iron oxide nanoparticles in orthotopic xenografts for surgical guidance.

Sci Rep. 2018-7-24

[4]
Preoperative PET imaging and fluorescence-guided surgery of human glioblastoma using dual-labeled antibody targeting ET receptors in a preclinical mouse model: A theranostic approach.

Theranostics. 2024

[5]
Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma.

Nanoscale. 2021-10-21

[6]
Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems.

AAPS PharmSciTech. 2021-2-11

[7]
Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence.

BMC Cancer. 2024-1-2

[8]
A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment.

Drug Deliv. 2019-12

[9]
Magnetic targeting of paclitaxel-loaded poly(lactic--glycolic acid)-based nanoparticles for the treatment of glioblastoma.

Int J Nanomedicine. 2018-8-8

[10]
An Advanced Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood-Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles.

ACS Appl Mater Interfaces. 2021-6-16

引用本文的文献

[1]
Modulation of the immune microenvironment using nanomaterials: a new strategy for tumor immunotherapy.

Front Immunol. 2025-7-2

[2]
Crossing the Blood-Brain Barrier: Innovations in Receptor- and Transporter-Mediated Transcytosis Strategies.

Pharmaceutics. 2025-5-28

[3]
Interfacing with the Brain: How Nanotechnology Can Contribute.

ACS Nano. 2025-3-25

[4]
Decoration of Autophagy Detecting Nanoparticle with an Anionic Fluorochrome Enhances Multispectral Characterization of Autophagosome Location and Flux.

Small. 2025-2

[5]
Enhancing Glioblastoma Resection with NIR Fluorescence Imaging: A Systematic Review.

Cancers (Basel). 2024-11-27

[6]
Solubilization techniques used for poorly water-soluble drugs.

Acta Pharm Sin B. 2024-11

[7]
Star-polymer unimolecular micelle nanoparticles to deliver a payload across the blood-brain barrier.

Nanoscale. 2024-11-28

[8]
Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment.

Biomater Res. 2024-10-18

[9]
SERS surgical navigation with postsurgical immunotherapy of local microtumors and distant metastases for improved anticancer outcomes.

Sci Adv. 2024-8-16

[10]
Current advance of nanotechnology in diagnosis and treatment for malignant tumors.

Signal Transduct Target Ther. 2024-8-12

本文引用的文献

[1]
Multicenter Safety and Practice for Off-Label Diagnostic Use of Ferumoxytol in MRI.

Radiology. 2019-10-22

[2]
An update on the currently available and future chemotherapy for treating bone metastases in breast cancer patients.

Expert Opin Pharmacother. 2018-8-21

[3]
Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles.

Contrast Media Mol Imaging. 2017-12-11

[4]
Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.

Comp Med. 2017-8-1

[5]
UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses.

Neoplasia. 2017-8

[6]
Near-Infrared Heptamethine Cyanine Based Iron Oxide Nanoparticles for Tumor Targeted Multimodal Imaging and Photothermal Therapy.

Sci Rep. 2017-5-18

[7]
Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.

Kidney Int. 2017-7

[8]
Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer.

Expert Opin Pharmacother. 2017-5

[9]
Neurocognitive status in patients with newly-diagnosed brain tumors in good neurological condition: The impact of tumor type, volume, and location.

Clin Neurol Neurosurg. 2017-5

[10]
ZEB1 regulates glioma stemness through LIF repression.

Sci Rep. 2017-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索