Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.
Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.
ACS Nano. 2020 Jul 28;14(7):8392-8408. doi: 10.1021/acsnano.0c02509. Epub 2020 Jun 23.
Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.
尽管在提高胶质母细胞瘤(GBM)治疗效果方面做出了巨大努力,但 GBM 仍然是最致命的癌症之一。有效的 GBM 治疗需要术中对肿瘤进行敏感的可视化,并在术后有效输送化疗药物。不幸的是,GBM 的弥漫性和浸润性限制了 GBM 肿瘤的检测,而目前的术中可视化方法限制了完全切除肿瘤。此外,尽管化疗常用于消除手术后残留的任何癌变组织,但大多数化疗药物不能有效地穿过血脑屏障(BBB)或进入 GBM 肿瘤。因此,GBM 的治疗选择有限,复发率高,需要改进其在手术和治疗过程中的完全可视化方法。在此,我们报告了一种用于近红外荧光(NIRF)的荧光纳米颗粒平台,用于基于肿瘤边界可视化和图像引导的递送至 GBM 肿瘤的药物输送。我们的纳米平台基于 FDA 批准的磁共振成像敏感超顺磁性氧化铁纳米颗粒 ferumoxytol(FMX),该纳米颗粒与 hepthamethine cyanine(HMC)偶联,HMC 是一种 NIRF 配体,特异性靶向在 GBM 中过表达的有机阴离子转运多肽。我们已经证明,HMC-FMX 纳米颗粒可以穿过 BBB 并在原位 GBM 小鼠模型中选择性地积聚在肿瘤中,从而能够基于 NIRF 可视化浸润性肿瘤组织。此外,HMC-FMX 可以封装化疗药物,如紫杉醇或顺铂,并将这些药物递送至 GBM 肿瘤中,从而缩小肿瘤大小并提高存活率。综上所述,这些观察结果表明,HMC-FMX 是一种有前途的 GBM 手术可视化和药物输送的纳米探针。
AAPS PharmSciTech. 2021-2-11
ACS Nano. 2025-3-25
Cancers (Basel). 2024-11-27
Acta Pharm Sin B. 2024-11
Biomater Res. 2024-10-18
Signal Transduct Target Ther. 2024-8-12
Radiology. 2019-10-22
Expert Opin Pharmacother. 2018-8-21
Contrast Media Mol Imaging. 2017-12-11
Expert Opin Pharmacother. 2017-5
Sci Rep. 2017-2-28