文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于胸部X光片纹理特征提取的可解释机器学习用于新冠肺炎肺炎分类

Explainable Machine Learning for COVID-19 Pneumonia Classification With Texture-Based Features Extraction in Chest Radiography.

作者信息

de Moura Luís Vinícius, Mattjie Christian, Dartora Caroline Machado, Barros Rodrigo C, Marques da Silva Ana Maria

机构信息

Medical Image Computing Laboratory, School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.

Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.

出版信息

Front Digit Health. 2022 Jan 17;3:662343. doi: 10.3389/fdgth.2021.662343. eCollection 2021.


DOI:10.3389/fdgth.2021.662343
PMID:35112097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8801500/
Abstract

Both reverse transcription-PCR (RT-PCR) and chest X-rays are used for the diagnosis of the coronavirus disease-2019 (COVID-19). However, COVID-19 pneumonia does not have a defined set of radiological findings. Our work aims to investigate radiomic features and classification models to differentiate chest X-ray images of COVID-19-based pneumonia and other types of lung patterns. The goal is to provide grounds for understanding the distinctive COVID-19 radiographic texture features using supervised ensemble machine learning methods based on trees through the interpretable Shapley Additive Explanations (SHAP) approach. We use 2,611 COVID-19 chest X-ray images and 2,611 non-COVID-19 chest X-rays. After segmenting the lung in three zones and laterally, a histogram normalization is applied, and radiomic features are extracted. SHAP recursive feature elimination with cross-validation is used to select features. Hyperparameter optimization of XGBoost and Random Forest ensemble tree models is applied using random search. The best classification model was XGBoost, with an accuracy of 0.82 and a sensitivity of 0.82. The explainable model showed the importance of the middle left and superior right lung zones in classifying COVID-19 pneumonia from other lung patterns.

摘要

逆转录聚合酶链反应(RT-PCR)和胸部X光检查都用于诊断2019冠状病毒病(COVID-19)。然而,COVID-19肺炎并没有明确的一组影像学表现。我们的工作旨在研究放射组学特征和分类模型,以区分基于COVID-19的肺炎的胸部X光图像和其他类型的肺部影像模式。目标是通过基于树的可解释的Shapley加性解释(SHAP)方法,使用监督集成机器学习方法,为理解COVID-19独特的放射学纹理特征提供依据。我们使用了2611张COVID-19胸部X光图像和2611张非COVID-19胸部X光图像。在将肺部分为三个区域并进行横向分割后,应用直方图归一化,并提取放射组学特征。使用带有交叉验证的SHAP递归特征消除来选择特征。使用随机搜索对XGBoost和随机森林集成树模型进行超参数优化。最佳分类模型是XGBoost,准确率为0.82,灵敏度为0.82。可解释模型显示了左中肺区和右上肺区在将COVID-19肺炎与其他肺部影像模式分类中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/b8c98f43a6a5/fdgth-03-662343-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/c96bdbfdb8b7/fdgth-03-662343-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/9a89ab55a6ef/fdgth-03-662343-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/f20f6b0ddf5c/fdgth-03-662343-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/74b4a6364ff1/fdgth-03-662343-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/a66cae51dd01/fdgth-03-662343-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/b8c98f43a6a5/fdgth-03-662343-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/c96bdbfdb8b7/fdgth-03-662343-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/9a89ab55a6ef/fdgth-03-662343-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/f20f6b0ddf5c/fdgth-03-662343-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/74b4a6364ff1/fdgth-03-662343-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/a66cae51dd01/fdgth-03-662343-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/8801500/b8c98f43a6a5/fdgth-03-662343-g0006.jpg

相似文献

[1]
Explainable Machine Learning for COVID-19 Pneumonia Classification With Texture-Based Features Extraction in Chest Radiography.

Front Digit Health. 2022-1-17

[2]
Two-step machine learning to diagnose and predict involvement of lungs in COVID-19 and pneumonia using CT radiomics.

Comput Biol Med. 2022-11

[3]
A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.

Curr Med Imaging. 2023

[4]
Machine Learning Model Based on Radiomic Features for Differentiation between COVID-19 and Pneumonia on Chest X-ray.

Sensors (Basel). 2022-9-5

[5]
Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images.

Chaos Solitons Fractals. 2021-4

[6]
Texture Analysis in the Evaluation of COVID-19 Pneumonia in Chest X-Ray Images: A Proof of Concept Study.

Curr Med Imaging. 2021

[7]
CT-based radiomics for predicting the rapid progression of coronavirus disease 2019 (COVID-19) pneumonia lesions.

Br J Radiol. 2021-6-1

[8]
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.

J Adv Res. 2023-6

[9]
An integrated framework with machine learning and radiomics for accurate and rapid early diagnosis of COVID-19 from Chest X-ray.

Expert Syst Appl. 2021-10-15

[10]
Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI.

Comput Biol Med. 2022-11

引用本文的文献

[1]
Classification of collagen remodeling in asthma using second-harmonic generation imaging, supervised machine learning and texture-based analysis.

Front Bioinform. 2025-4-17

[2]
Development and validation of an interpretable delta radiomics-based model for predicting invasive ground-glass nodules in lung adenocarcinoma: a retrospective cohort study.

Quant Imaging Med Surg. 2024-6-1

[3]
Comprehensive Survey of Machine Learning Systems for COVID-19 Detection.

J Imaging. 2022-9-30

本文引用的文献

[1]
Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images.

IEEE Access. 2021-3-9

[2]
Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments.

IEEE Access. 2020-10-26

[3]
"Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images".

Appl Intell (Dordr). 2021

[4]
Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods.

J Pers Med. 2021-8-27

[5]
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays.

Pattern Recognit. 2022-2

[6]
Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia.

Radiol Med. 2021-11

[7]
Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics.

J Clin Med. 2021-7-14

[8]
Correcting data imbalance for semi-supervised COVID-19 detection using X-ray chest images.

Appl Soft Comput. 2021-11

[9]
Radiomics Is Effective for Distinguishing Coronavirus Disease 2019 Pneumonia From Influenza Virus Pneumonia.

Front Public Health. 2021

[10]
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department.

NPJ Digit Med. 2021-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索