Suppr超能文献

一种用于预测急诊科新冠肺炎患者病情恶化的人工智能系统。

An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department.

作者信息

Shamout Farah E, Shen Yiqiu, Wu Nan, Kaku Aakash, Park Jungkyu, Makino Taro, Jastrzębski Stanisław, Witowski Jan, Wang Duo, Zhang Ben, Dogra Siddhant, Cao Meng, Razavian Narges, Kudlowitz David, Azour Lea, Moore William, Lui Yvonne W, Aphinyanaphongs Yindalon, Fernandez-Granda Carlos, Geras Krzysztof J

机构信息

Engineering Division, NYU Abu Dhabi, Abu Dhabi, UAE.

Center for Data Science, New York University, New York, NY, USA.

出版信息

NPJ Digit Med. 2021 May 12;4(1):80. doi: 10.1038/s41746-021-00453-0.

Abstract

During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.

摘要

在2019年冠状病毒病(COVID-19)大流行期间,急诊科对患者进行快速准确的分诊对于指导决策至关重要。我们提出了一种数据驱动的方法,使用从胸部X光图像学习的深度神经网络和从常规临床变量学习的梯度提升模型来自动预测病情恶化风险。我们的人工智能预后系统使用3661名患者的数据进行训练,在预测96小时内病情恶化时,受试者操作特征曲线下面积(AUC)达到0.786(95%置信区间:0.745 - 0.830)。深度神经网络提取胸部X光图像的信息区域,以协助临床医生解释预测结果,并且在一项阅片研究中与两名放射科医生的表现相当。为了在实际临床环境中验证性能,我们在大流行第一波期间于纽约大学朗格尼健康中心悄悄部署了深度神经网络的初步版本,该版本实时产生了准确的预测结果。总之,我们的研究结果证明了所提出的系统在协助一线医生对COVID-19患者进行分诊方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ae/8115328/6cb15497956b/41746_2021_453_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验