Suppr超能文献

基于可解释性Delta放射组学模型预测肺腺癌侵袭性磨玻璃结节的研究与验证:一项回顾性队列研究

Development and validation of an interpretable delta radiomics-based model for predicting invasive ground-glass nodules in lung adenocarcinoma: a retrospective cohort study.

作者信息

Xue Tingjia, Zhu Lin, Tao Yali, Ye Xiaodan, Yu Hong

机构信息

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

出版信息

Quant Imaging Med Surg. 2024 Jun 1;14(6):4086-4097. doi: 10.21037/qims-23-1711. Epub 2024 May 24.

Abstract

BACKGROUND

Radiomics models based on computed tomography (CT) can be used to differentiate invasive ground-glass nodules (GGNs) in lung adenocarcinoma to help determine the optimal timing of GGN resection, improve the accuracy of prognostic prediction, and reduce unnecessary surgeries. However, general radiomics does not fully utilize follow-up data and often lacks model interpretation. Therefore, this study aimed to build an interpretable model based on delta radiomics to predict GGN invasiveness.

METHODS

A retrospective analysis was conducted on a set of 303 GGNs that were surgically resected and confirmed as lung adenocarcinoma in Shanghai Chest Hospital between September 2017 and August 2022. Delta radiomics and general radiomics features were extracted from preoperative follow-up CT scans and combined with clinical features for modeling. The performance of the delta radiomics-clinical model was compared to that of the radiomics-clinical model. Additionally, Shapley additive explanations (SHAP) was employed to interpret and visualize the model.

RESULTS

Two models were constructed using a combination of 34 radiomic features and 10 delta radiomic features, along with 14 clinical features. The radiomics-clinical model and the delta radiomics-clinical model exhibited area under the curve (AUC) of 0.986 [95% confidence interval (CI): 0.977-0.995] and 0.974 (95% CI: 0.959-0.987) in the training set, respectively, and 0.949 (95% CI: 0.908-0.978) and 0.927 (95% CI: 0.879-0.966) in the test set, respectively. The DeLong test of the two models showed no statistical significance (P=0.10) in the test set. SHAP was used to output a summary plot for global interpretation, which showed that preoperative mass, three-dimensional (3D) length, mean diameter, volume, mean CT value, and delta radiomics feature original_firstorder_RootMeanSquared were the relatively more important features in the model. Waterfall plots for local interpretation showed how each feature contributed to the prediction output of a given GGN.

CONCLUSIONS

The delta radiomics-based model proved to be a helpful tool for predicting the invasiveness of GGNs in lung adenocarcinoma. This approach offers a precise, noninvasive alternative in informing clinical decision-making. Additionally, SHAP provided insightful and user-friendly interpretations and visualizations of the model, enhancing its clinical applicability.

摘要

背景

基于计算机断层扫描(CT)的放射组学模型可用于鉴别肺腺癌中的浸润性磨玻璃结节(GGN),以帮助确定GGN切除的最佳时机,提高预后预测的准确性,并减少不必要的手术。然而,一般的放射组学并未充分利用随访数据,且往往缺乏模型解释。因此,本研究旨在构建基于增量放射组学的可解释模型来预测GGN的浸润性。

方法

对2017年9月至2022年8月在上海胸科医院手术切除并确诊为肺腺癌的303个GGN进行回顾性分析。从术前随访CT扫描中提取增量放射组学和一般放射组学特征,并结合临床特征进行建模。将增量放射组学-临床模型的性能与放射组学-临床模型的性能进行比较。此外,采用Shapley加性解释(SHAP)对模型进行解释和可视化。

结果

使用34个放射组学特征、10个增量放射组学特征以及14个临床特征构建了两个模型。放射组学-临床模型和增量放射组学-临床模型在训练集中的曲线下面积(AUC)分别为0.986 [95%置信区间(CI):0.977-0.995]和0.974(95%CI:0.959-0.987),在测试集中分别为0.949(95%CI:0.908-0.978)和0.927(95%CI:0.879-0.966)。两个模型的DeLong检验在测试集中无统计学意义(P=0.10)。SHAP用于输出全局解释的汇总图,结果显示术前肿块、三维(3D)长度、平均直径、体积、平均CT值以及增量放射组学特征original_firstorder_RootMeanSquared是模型中相对更重要的特征。局部解释的瀑布图显示了每个特征如何对给定GGN的预测输出产生影响。

结论

基于增量放射组学的模型被证明是预测肺腺癌中GGN浸润性的有用工具。这种方法为临床决策提供了一种精确、无创的选择。此外,SHAP为模型提供了有洞察力且用户友好的解释和可视化,增强了其临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0264/11151254/860afb54350c/qims-14-06-4086-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验