Suppr超能文献

利用二次谐波生成成像、监督机器学习和基于纹理的分析对哮喘中的胶原重塑进行分类。

Classification of collagen remodeling in asthma using second-harmonic generation imaging, supervised machine learning and texture-based analysis.

作者信息

Kunchur Natasha N, Poole Joshua J A, Levine Jesse, Hackett Tillie-Louise, Thornhill Rebecca, Mostaço-Guidolin Leila B

机构信息

Department of Systems and Computer Engineering at Carleton University, Ottawa, ON, Canada.

Anesthesiology, Pharmacology and Therapeutics Department at the University of British Columbia, Medical Sciences, Vancouver, BC, Canada.

出版信息

Front Bioinform. 2025 Apr 17;5:1539936. doi: 10.3389/fbinf.2025.1539936. eCollection 2025.

Abstract

Airway remodeling is present in all stages of asthma severity and has been linked to reduced lung function, airway hyperresponsiveness and increased deposition of fibrillar collagens. Traditional histological staining methods used to visualize the fibrotic response are poorly suited to capture the morphological traits of extracellular matrix (ECM) proteins in their native state, hindering our understanding of disease pathology. Conversely, second harmonic generation (SHG), provides label-free, high-resolution visualization of fibrillar collagen; a primary ECM protein contributing to the loss of asthmatic lung elasticity. From a cohort of 13 human lung donors, SHG-imaged collagen belonging to non-asthmatic (control) and asthmatic donors was evaluated through a custom textural classification pipeline. Integrated with supervised machine learning, the pipeline enables the precise quantification and characterization of collagen, delineating amongst control and remodeled airways. Collagen distribution is quantified and characterized using 80 textural features belonging to the Gray Level Cooccurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), Gray Level Dependence Matrix (GLDM) and Neighboring Gray Tone Difference Matrix (NGTDM). To denote an accurate subset of features reflective of fibrillar collagen formation; filter, wrapper, embedded and novel statistical methods were applied as feature refinement. Textural feature subsets of high predictor importance trained a support vector machine model, achieving an AUC-ROC of 94% ± 0.0001 in the classification of remodeled airway collagen vs. control lung tissue. Combined with detailed texture analysis and supervised ML, we demonstrate that morphological variation amongst remodeled SHG-imaged collagen in lung tissue can be successfully characterized.

摘要

气道重塑存在于哮喘严重程度的所有阶段,并与肺功能降低、气道高反应性以及纤维状胶原蛋白沉积增加有关。用于观察纤维化反应的传统组织学染色方法不太适合捕捉天然状态下细胞外基质(ECM)蛋白的形态特征,这阻碍了我们对疾病病理学的理解。相反,二次谐波产生(SHG)提供了无标记、高分辨率的纤维状胶原蛋白可视化;纤维状胶原蛋白是导致哮喘肺弹性丧失的主要细胞外基质蛋白。从13名人类肺供体队列中,通过定制的纹理分类管道对属于非哮喘(对照)和哮喘供体的SHG成像胶原蛋白进行了评估。该管道与监督机器学习相结合,能够对胶原蛋白进行精确的定量和表征,区分对照气道和重塑气道。使用属于灰度共生矩阵(GLCM)、灰度大小区域矩阵(GLSZM)、灰度游程长度矩阵(GLRLM)、灰度依赖矩阵(GLDM)和相邻灰度色调差异矩阵(NGTDM)的80个纹理特征对胶原蛋白分布进行定量和表征。为了表示反映纤维状胶原蛋白形成的准确特征子集;应用了过滤、包装、嵌入和新颖的统计方法作为特征细化。预测重要性高的纹理特征子集训练了一个支持向量机模型,在重塑气道胶原蛋白与对照肺组织的分类中,AUC-ROC达到94%±0.0001。结合详细的纹理分析和监督机器学习,我们证明了肺组织中重塑的SHG成像胶原蛋白之间的形态变化可以成功地表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f643/12043662/2792af8651cd/fbinf-05-1539936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验