Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada.
Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme, Canada.
Phys Chem Chem Phys. 2022 Feb 16;24(7):4174-4186. doi: 10.1039/d1cp04626h.
Field-effect biosensors (bioFETs) offer a novel way to measure the kinetics of biomolecular events such as protein function and DNA hybridization at the single-molecule level on a wide range of time scales. These devices generate an electrical current whose fluctuations are correlated to the kinetics of the biomolecule under study. BioFETs are indeed highly sensitive to changes in the electrostatic potential (ESP) generated by the biomolecule. Here, using all-atom solvent explicit molecular dynamics simulations, we further investigate the molecular origin of the variation of this ESP for two prototypical cases of proteins or nucleic acids attached to a carbon nanotube bioFET: the function of the lysozyme protein and the hybridization of a 10-nt DNA sequence, as previously done experimentally. Our results show that the ESP changes significantly on the surface of the carbon nanotube as the state of these two biomolecules changes. More precisely, the ESP distributions calculated for these molecular states explain well the magnitude of the conductance fluctuations measured experimentally. The dependence of the ESP with salt concentration is found to agree with the reduced conductance fluctuations observed experimentally for the lysozyme, but to differ for the case of DNA, suggesting that other mechanisms might be at play in this case. Furthermore, we show that the carbon nanotube does not impact significantly the structural stability of the lysozyme, corroborating that the kinetic rates measured using bioFETs are similar to those measured by other techniques. For DNA, we find that the structural ensemble of the single-stranded DNA is significantly impacted by the presence of the nanotube, which, combined with the ESP analysis, suggests a stronger DNA-device interplay. Overall, our simulations strengthen the comprehension of the inner working of field-effect biosensors used for single-molecule kinetics measurements on proteins and nucleic acids.
场效应生物传感器(bioFET)提供了一种新的方法,可以在广泛的时间尺度上测量生物分子事件(如蛋白质功能和 DNA 杂交)的动力学,其在单分子水平上进行。这些设备产生的电流波动与所研究的生物分子的动力学相关。bioFET 确实对生物分子产生的静电势(ESP)的变化非常敏感。在这里,我们使用全原子溶剂显式分子动力学模拟,进一步研究了两种附着在碳纳米管 bioFET 上的典型蛋白质或核酸的 ESP 变化的分子起源:溶菌酶蛋白的功能和 10nt DNA 序列的杂交,如之前实验中所做的那样。我们的结果表明,随着这两种生物分子状态的变化,ESP 在碳纳米管表面发生了显著变化。更准确地说,为这些分子状态计算的 ESP 分布很好地解释了实验中测量到的电导波动的幅度。ESP 随盐浓度的依赖性与实验中观察到的溶菌酶的电导波动降低一致,但对于 DNA 的情况则不同,这表明在这种情况下可能存在其他机制。此外,我们表明碳纳米管不会显著影响溶菌酶的结构稳定性,这证实了使用 bioFET 测量的动力学速率与其他技术测量的速率相似。对于 DNA,我们发现单链 DNA 的结构集合受到纳米管的显著影响,这与 ESP 分析相结合,表明 DNA-器件的相互作用更强。总的来说,我们的模拟增强了对用于蛋白质和核酸单分子动力学测量的场效应生物传感器的内部工作机制的理解。