Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
Faculty of Education, The University of Hong Kong, Hong Kong, China.
Prev Sci. 2023 Apr;24(3):480-492. doi: 10.1007/s11121-022-01346-8. Epub 2022 Feb 3.
In research applications, mental health problems such as alcohol-related problems and depression are commonly assessed and evaluated using scale scores or latent trait scores derived from factor analysis or item response theory models. This tutorial paper demonstrates the use of cognitive diagnosis models (CDMs) as an alternative approach to characterizing mental health problems of young adults when item-level data are available. Existing measurement approaches focus on estimating the general severity of a given mental health problem at the scale level as a unidimensional construct without accounting for other symptoms of related mental health problems. The prevailing approaches may ignore clinically meaningful presentations of related symptoms at the item level. The current study illustrates CDMs using item-level data from college students (40 items from 719 respondents; 34.6% men, 83.9% White, and 16.3% first-year students). Specifically, we evaluated the constellation of four postulated domains (i.e., alcohol-related problems, anxiety, hostility, and depression) as a set of attribute profiles using CDMs. After accounting for the impact of each attribute (i.e., postulated domain) on the estimates of attribute profiles, the results demonstrated that when items or attributes have limited information, CDMs can utilize item-level information in the associated attributes to generate potentially meaningful estimates and profiles, compared to analyzing each attribute independently. We introduce a novel visual inspection aid, the lens plot, for quantifying this gain. CDMs may be a useful analytical tool to capture respondents' risk and resilience for prevention research.
在研究应用中,通常使用来自因子分析或项目反应理论模型的量表分数或潜在特质分数来评估和评估心理健康问题,如与酒精相关的问题和抑郁。本教程论文演示了如何在可用项目级数据时,使用认知诊断模型 (CDM) 作为一种替代方法来描述年轻成年人的心理健康问题。现有的测量方法侧重于在量表水平上估计给定心理健康问题的一般严重程度,作为一个单一维度的结构,而不考虑相关心理健康问题的其他症状。现有的方法可能忽略了与症状相关的症状在项目水平上的有临床意义的表现。本研究使用来自大学生的项目级数据(来自 719 名受访者的 40 个项目;34.6%的男性,83.9%的白人,16.3%的一年级学生)来说明 CDM。具体来说,我们使用 CDM 评估了四个假设的领域(即与酒精相关的问题、焦虑、敌意和抑郁)作为一组属性配置文件。在考虑到每个属性(即假设的域)对属性配置文件的估计的影响后,结果表明,当项目或属性的信息量有限时,与独立分析每个属性相比,CDM 可以利用相关属性中的项目级信息来生成潜在有意义的估计和配置文件。我们引入了一种新颖的视觉检查辅助工具,即透镜图,用于量化这种增益。CDM 可能是一种用于捕获受访者风险和弹性的有用分析工具,用于预防研究。