Suppr超能文献

多阶段机器学习模型在食管测压诊断中的应用。

A multi-stage machine learning model for diagnosis of esophageal manometry.

机构信息

Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, 14th Floor, Chicago, IL 60611, USA.

Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, 14th Floor, Chicago, IL 60611, USA.

出版信息

Artif Intell Med. 2022 Feb;124:102233. doi: 10.1016/j.artmed.2021.102233. Epub 2021 Dec 25.

Abstract

High-resolution manometry (HRM) is the primary procedure used to diagnose esophageal motility disorders. Its manual interpretation and classification, including evaluation of swallow-level outcomes and then derivation of a study-level diagnosis based on Chicago Classification (CC), may be limited by inter-rater variability and inaccuracy of an individual interpreter. We hypothesized that an automatic diagnosis platform using machine learning and artificial intelligence approaches could be developed to accurately identify esophageal motility diagnoses. Further, a multi-stage modeling framework, akin to the step-wise approach of the CC, was utilized to leverage advantages of a combination of machine learning approaches including deep-learning models and feature-based models. Models were trained and tested using a dataset comprised of 1741 patients' HRM studies with CC diagnoses assigned by expert physician raters. In the swallow-level stage, three models based on convolutional neural networks (CNNs) were developed to predict swallow type and swallow pressurization (test accuracies of 0.88 and 0.93, respectively), and integrated relaxation pressure (IRP)(regression model with test error of 4.49 mmHg). At the study-level stage, model selection from families of the expert-knowledge-based rule models, xgboost models and artificial neural network(ANN) models were conducted. A simple model-agnostic strategy of model balancing motivated by Bayesian principles was utilized, which gave rise to model averaging weighted by precision scores. The averaged (blended) models and individual models were compared and evaluated, of which the best performance on test dataset is 0.81 in top-1 prediction, 0.92 in top-2 predictions. This is the first artificial-intelligence style model to automatically predict esophageal motility (CC) diagnoses from HRM studies using raw multi-swallow data and it achieved high accuracy. Thus, this proposed modeling framework could be broadly applied to assist with HRM interpretation in a clinical setting.

摘要

高分辨率测压(HRM)是诊断食管动力障碍的主要方法。其手动解释和分类,包括对吞咽水平结果的评估,然后根据芝加哥分类(CC)得出研究水平的诊断,可能受到评分者间变异性和个体解释者的不准确性的限制。我们假设可以开发一种使用机器学习和人工智能方法的自动诊断平台,以准确识别食管动力诊断。此外,使用类似于 CC 的逐步方法的多阶段建模框架,利用了包括深度学习模型和基于特征的模型在内的多种机器学习方法的优势。使用由 1741 名患者 HRM 研究组成的数据集,这些研究由专家医师评分者分配 CC 诊断,对模型进行了训练和测试。在吞咽水平阶段,开发了三个基于卷积神经网络(CNN)的模型,以预测吞咽类型和吞咽加压(测试准确率分别为 0.88 和 0.93)和整合松弛压力(IRP)(测试误差为 4.49mmHg 的回归模型)。在研究水平阶段,对基于专家知识规则模型、xgboost 模型和人工神经网络(ANN)模型的模型家族进行了选择。利用基于贝叶斯原理的简单无模型策略来进行模型平衡,从而产生由精度得分加权的模型平均。比较和评估了平均(混合)模型和单个模型,其中测试数据集上的最佳性能是 0.81 的首位预测,0.92 的前两位预测。这是第一个使用原始多吞咽数据从 HRM 研究中自动预测食管动力(CC)诊断的人工智能风格模型,它实现了高精度。因此,该建模框架可广泛应用于协助临床 HRM 解释。

相似文献

1

引用本文的文献

1
ChatGPT Is Not Yet Ready to Replace Motility Experts.ChatGPT尚未准备好取代动力专家。
Clin Gastroenterol Hepatol. 2025 Jul 22. doi: 10.1016/j.cgh.2025.04.033.
2
Mixed attention ensemble for esophageal motility disorders classification.用于食管动力障碍分类的混合注意力集成方法
PLoS One. 2025 Feb 14;20(2):e0317912. doi: 10.1371/journal.pone.0317912. eCollection 2025.

本文引用的文献

2
Application of Artificial Intelligence to Gastroenterology and Hepatology.人工智能在胃肠病学和肝脏病学中的应用。
Gastroenterology. 2020 Jan;158(1):76-94.e2. doi: 10.1053/j.gastro.2019.08.058. Epub 2019 Oct 5.
7
Artificial Intelligence in Cardiology.人工智能在心脏病学中的应用。
J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
8
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验