Suppr超能文献

人类大脑和深度人工网络中高阶处理期间未观察到内容的信息神经表示。

Informative neural representations of unseen contents during higher-order processing in human brains and deep artificial networks.

机构信息

Basque Center on Cognition, Brain and Language, San Sebastian, Spain.

Computer Science and Artificial Intelligence Department, University of Basque Country, San Sebastian, Spain.

出版信息

Nat Hum Behav. 2022 May;6(5):720-731. doi: 10.1038/s41562-021-01274-7. Epub 2022 Feb 3.

Abstract

A framework to pinpoint the scope of unconscious processing is critical to improve models of visual consciousness. Previous research observed brain signatures of unconscious processing in visual cortex, but these were not reliably identified. Further, whether unconscious contents are represented in high-level stages of the ventral visual stream and linked parieto-frontal areas remains unknown. Using a within-subject, high-precision functional magnetic resonance imaging approach, we show that unconscious contents can be decoded from multi-voxel patterns that are highly distributed alongside the ventral visual pathway and also involving parieto-frontal substrates. Classifiers trained with multi-voxel patterns of conscious items generalized to predict the unconscious counterparts, indicating that their neural representations overlap. These findings suggest revisions to models of consciousness such as the neuronal global workspace. We then provide a computational simulation of visual processing/representation without perceptual sensitivity by using deep neural networks performing a similar visual task. The work provides a framework for pinpointing the representation of unconscious knowledge across different task domains.

摘要

确定无意识加工范围的框架对于改进视觉意识模型至关重要。先前的研究观察到了视觉皮层中无意识加工的大脑特征,但这些特征并不可靠。此外,无意识内容是否在腹侧视觉流和连接的顶叶-额叶区域的高级阶段得到表示仍然未知。使用基于个体的高精度功能磁共振成像方法,我们表明可以从沿着腹侧视觉通路高度分布的多体素模式中解码无意识内容,并且还涉及顶叶-额叶基质。使用有意识项目的多体素模式训练的分类器可以推广以预测无意识的对应项,表明它们的神经表示重叠。这些发现表明对意识模型(例如神经元全局工作区)进行修订。然后,我们通过使用执行类似视觉任务的深度神经网络,提供了一种没有感知敏感性的视觉处理/表示的计算模拟。这项工作为在不同任务领域确定无意识知识的表示提供了一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验