Suppr超能文献

解析新冠病毒主蛋白酶底物结合位点的结构特征,助力基于结构的 COVID-19 药物研发。

Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery.

机构信息

Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.

Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.

出版信息

Proteins. 2022 May;90(5):1090-1101. doi: 10.1002/prot.26318. Epub 2022 Feb 14.

Abstract

An attractive drug target to combat COVID-19 is the main protease (M ) because of its key role in the viral life cycle by processing the polyproteins translated from the viral RNA. Studying the crystal structures of the protease is important to enhance our understanding of its mechanism of action at the atomic-level resolution, and consequently may provide crucial structural insights for structure-based drug discovery. In the current study, we report a comparative structural analysis of the M substrate binding site for both apo and holo forms to identify key interacting residues and conserved water molecules during the ligand-binding process. It is shown that in addition to the catalytic dyad residues (His41 and Cys145), the oxyanion hole residues (Asn142-Ser144) and residues His164-Glu166 form essential parts of the substrate-binding pocket of the protease in the binding process. Furthermore, we address the issue of the substrate-binding pocket flexibility and show that two adjacent loops in the M structures (residues Thr45-Met49 and Arg188-Ala191) with high flexibility can regulate the binding cavity' accessibility for different ligand sizes. Moreover, we discuss in detail the various structural and functional roles of several important conserved and mobile water molecules within and around the binding site in the proper enzymatic function of M . We also present a new docking protocol in the framework of the ensemble docking strategy. The performance of the docking protocol has been evaluated in predicting ligand binding pose and affinity ranking for two popular docking programs; AutoDock4 and AutoDock Vina. Our docking results suggest that the top-ranked poses of the most populated clusters obtained by AutoDock Vina are the most important representative docking runs that show a very good performance in estimating experimental binding poses and affinity ranking.

摘要

一种有吸引力的对抗 COVID-19 的药物靶标是主蛋白酶(M),因为它在病毒生命周期中通过加工从病毒 RNA 翻译的多蛋白发挥关键作用。研究蛋白酶的晶体结构对于增强我们在原子分辨率水平上对其作用机制的理解很重要,并且可能为基于结构的药物发现提供关键的结构见解。在本研究中,我们报告了 apo 和 holo 两种形式的 M 底物结合位点的比较结构分析,以确定配体结合过程中关键的相互作用残基和保守的水分子。结果表明,除了催化双残基(His41 和 Cys145)外,氧阴离子穴残基(Asn142-Ser144)和残基 His164-Glu166 在结合过程中形成蛋白酶底物结合口袋的必需部分。此外,我们解决了底物结合口袋灵活性的问题,并表明 M 结构中两个相邻的环(残基 Thr45-Met49 和 Arg188-Ala191)具有很高的灵活性,可以调节结合腔对不同配体大小的可及性。此外,我们详细讨论了结合位点内和周围几个重要保守和移动水分子在 M 酶正确功能中的各种结构和功能作用。我们还在整体对接策略的框架内提出了一种新的对接方案。对接方案的性能通过预测两种流行的对接程序(AutoDock4 和 AutoDock Vina)的配体结合构象和亲和力排名进行了评估。我们的对接结果表明,AutoDock Vina 获得的最流行簇的排名靠前的构象是最重要的代表性对接运行,在估计实验结合构象和亲和力排名方面表现出非常好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验