Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33647, USA.
Bull Math Biol. 2019 Oct;81(10):3722-3731. doi: 10.1007/s11538-019-00640-x. Epub 2019 Jul 23.
The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735-1741, 1977; Norton in Can Res 48:7067-7071, 1988; Hahnfeldt et al. in Can Res 59:4770-4775, 1999; Anderson et al. in Comput Math Methods Med 2:129-154, 2000. https://doi.org/10.1080/10273660008833042 ; Michor et al. in Nature 435:1267-1270, 2005. https://doi.org/10.1038/nature03669 ; Anderson et al. in Cell 127:905-915, 2006. https://doi.org/10.1016/j.cell.2006.09.042 ; Benzekry et al. in PLoS Comput Biol 10:e1003800, 2014. https://doi.org/10.1371/journal.pcbi.1003800 ). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to.
根据美国国家医学图书馆和美国国立卫生研究院提供的 PubMed 记录,癌症数学建模的出版物数量呈指数级增长。开创性的论文已经启动并推动了癌症的数学建模,并帮助定义了数学肿瘤学领域(Norton 和 Simon 在 J Natl Cancer Inst 58:1735-1741, 1977;Norton 在 Can Res 48:7067-7071, 1988;Hahnfeldt 等人在 Can Res 59:4770-4775, 1999;Anderson 等人在 Comput Math Methods Med 2:129-154, 2000. https://doi.org/10.1080/10273660008833042;Michor 等人在 Nature 435:1267-1270, 2005. https://doi.org/10.1038/nature03669;Anderson 等人在 Cell 127:905-915, 2006. https://doi.org/10.1016/j.cell.2006.09.042;Benzekry 等人在 PLoS Comput Biol 10:e1003800, 2014. https://doi.org/10.1371/journal.pcbi.1003800)。随着本科和研究生数学生物学课程的引入,我们开始看到课程的发展具有特定和专门的重点是数学肿瘤学。2018 年,各种期刊共发表了 218 篇关于癌症数学建模的文章,不仅包括数学生物学通报和理论生物学杂志等传统建模期刊,还包括在癌症领域具有巨大影响力的著名科学、生物学和癌症期刊上的出版物(Cell、Cancer Research、Clinical Cancer Research、Cancer Discovery、Scientific Reports、PNAS、PLoS Biology、Nature Communications、eLife 等)。这表明正在为多种目的开发癌症模型的广泛程度。虽然一些模型是基于自下而上的方法的现象学性质,而其他模型则更具自上而下的数据驱动性质。在这里,我们讨论了数学肿瘤学出版物中出现的预测新的、最佳的、有时甚至是针对患者的治疗方法的新趋势,并提出了何时使用模型来预测新的治疗方法,以及更重要的是何时不使用模型的建议。