HSE University, Moscow, Russian Federation.
York University, Toronto, Canada.
PLoS One. 2022 Feb 4;17(2):e0263106. doi: 10.1371/journal.pone.0263106. eCollection 2022.
A constant blood supply to the brain is required for mental function. Research with Doppler ultrasonography has important clinical value and burgeoning potential with machine learning applications in studies predicting gestational age and vascular aging. Critically, studies on ultrasound metrics in school-age children are sparse and no machine learning study to date has used color duplex ultrasonography to predict age and classify age-group. The purpose of our study is two-fold: first to document cerebrovascular hemodynamics considering age, gender, and hemisphere in three arteries; and second to construct machine learning models that can predict and classify the age and age-group of a participant using ultrasonography metrics. We record peak systolic, end-diastolic, and time-averaged maximum velocities bilaterally in internal carotid, vertebral, and middle cerebral arteries from 821 participants. Results confirm that ultrasonography values decrease with age and reveal that gender and hemispheres show more similarities than differences, which depend on age, artery, and metric. Machine learning algorithms predict age and classifier models distinguish cerebrovascular hemodynamics between children and adults. Blood velocities, rather than blood vessel diameters, are more important for classifier models, and common and distinct variables contribute to age classification models for males and females.
大脑需要持续的血液供应才能维持正常的思维功能。应用于预测胎龄和血管老化的机器学习研究中,多普勒超声检查具有重要的临床价值和广阔的发展潜力。重要的是,目前关于学龄儿童超声指标的研究还很少,也没有使用彩色双功能超声来预测年龄和分类年龄组的机器学习研究。我们的研究目的有两个:首先,记录三个动脉中考虑年龄、性别和大脑半球的脑血管动力学;其次,构建可以使用超声指标预测和分类参与者年龄和年龄组的机器学习模型。我们从 821 名参与者中双侧记录颈内动脉、椎动脉和大脑中动脉的收缩期峰值速度、舒张末期速度和平均最大速度。结果证实,超声值随年龄的增长而降低,并且性别和大脑半球之间的差异小于相似性,这取决于年龄、动脉和指标。机器学习算法可以预测年龄,分类模型可以区分儿童和成人的脑血管动力学。对于分类模型来说,血流速度比血管直径更为重要,而且常见和独特的变量有助于为男性和女性的年龄分类模型做出贡献。