文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工神经网络算法对 COVID-19 发病率和死亡率进行时空建模。

Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms.

机构信息

Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran 19967-15433, Iran.

Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran 19967-15433, Iran.

出版信息

Spat Spatiotemporal Epidemiol. 2022 Feb;40:100471. doi: 10.1016/j.sste.2021.100471. Epub 2021 Nov 11.


DOI:10.1016/j.sste.2021.100471
PMID:35120681
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8580864/
Abstract

The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.

摘要

冠状病毒病(COVID-19)的爆发已成为近年来全球最具挑战性的问题之一。由于全球范围内对 COVID-19 的时空建模研究不足,本研究旨在使用多层感知器人工神经网络拓扑结构,研究与 COVID-19 流行率和死亡率相关的潜在解释变量(n=75)的相对重要性。我们利用十种变量重要性分析方法来确定解释变量的相对重要性。主要发现表明,在所有时期,有几个变量一直是最具影响力的变量之一。就 COVID-19 的流行率而言,失业和人口密度是最重要的变量,具有最高的重要性得分。而对于 COVID-19 的死亡率,与健康相关的变量,如糖尿病患病率和医院床位数量,则是最重要的变量之一。本研究的结果可能为公共卫生政策制定者提供一般性的见解,以监测疾病的传播并支持决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/1ee4643d85ff/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/7532adc3cfa1/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/041aba4e311e/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/abd112a3081d/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/fc29cad6c4b2/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/5b18c28ea67b/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/163625f5041f/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/4872ef9ceb51/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/91569824d934/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/031705001d19/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/b5eb73aedab0/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/1ee4643d85ff/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/7532adc3cfa1/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/041aba4e311e/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/abd112a3081d/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/fc29cad6c4b2/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/5b18c28ea67b/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/163625f5041f/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/4872ef9ceb51/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/91569824d934/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/031705001d19/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/b5eb73aedab0/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b85/8580864/1ee4643d85ff/gr11_lrg.jpg

相似文献

[1]
Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms.

Spat Spatiotemporal Epidemiol. 2022-2

[2]
Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States.

Int J Environ Res Public Health. 2020-6-12

[3]
Comparing artificial neural network training algorithms to predict length of stay in hospitalized patients with COVID-19.

BMC Infect Dis. 2022-12-9

[4]
GIS-based spatio-temporal analysis and modeling of COVID-19 incidence rates in Europe.

Spat Spatiotemporal Epidemiol. 2022-6

[5]
Explanation of COVID-19 Mortality Using Artificial Neural Network Based on Underlying and Laboratory Risk Factors in Ilam, Iran.

Arch Razi Inst. 2022-6-30

[6]
Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting.

Front Public Health. 2021

[7]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

[8]
Application of artificial neural networks to predict the COVID-19 outbreak.

Glob Health Res Policy. 2020-11-23

[9]
A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.

J Med Internet Res. 2021-5-20

[10]
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020).

Int J Infect Dis. 2020-9

引用本文的文献

[1]
COVID-19 risk stratification among older adults: a machine learning approach to identify personal and health-related risk factors.

BMC Public Health. 2025-7-29

[2]
An investigation into the impact of temporality on COVID-19 infection and mortality predictions: new perspective based on Shapley Values.

BMC Med Res Methodol. 2025-4-24

[3]
Geospatial modelling of COVID19 mortality in Oman using geographically weighted Poisson regression GWPR.

Sci Rep. 2025-3-8

[4]
Prolonged exposure to air pollution and risk of acute kidney injury and related mortality: a prospective cohort study based on hospitalized AKI cases and general population controls from the UK Biobank.

BMC Public Health. 2024-10-21

[5]
Towards Improved XAI-Based Epidemiological Research into the Next Potential Pandemic.

Life (Basel). 2024-6-21

[6]
A Bayesian spatio-temporal model of COVID-19 spread in England.

Sci Rep. 2024-5-6

[7]
Optimizing spatio-temporal correlation structures for modeling food security in Africa: a simulation-based investigation.

BMC Bioinformatics. 2024-4-27

[8]
Identifying childhood malaria hotspots and risk factors in a Nigerian city using geostatistical modelling approach.

Sci Rep. 2024-3-5

[9]
Changes in symptoms and characteristics of COVID-19 patients across different variants: two years study using neural network analysis.

BMC Infect Dis. 2023-11-28

[10]
Exploration of the COVID-19 pandemic at the neighborhood level in an intra-urban setting.

Front Public Health. 2023

本文引用的文献

[1]
An analysis to identify the important variables for the spread of COVID-19 using numerical techniques and data science.

Case Stud Chem Environ Eng. 2021-6

[2]
ReCognizing SUspect and PredictiNg ThE SpRead of Contagion Based on Mobile Phone LoCation DaTa (COUNTERACT): A system of identifying COVID-19 infectious and hazardous sites, detecting disease outbreaks based on the internet of things, edge computing, and artificial intelligence.

Sustain Cities Soc. 2021-6

[3]
Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments.

IEEE Access. 2020-10-26

[4]
Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States.

Int J Environ Res Public Health. 2021-9-8

[5]
The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population.

Global Health. 2021-5-20

[6]
COVID-19 modelling in the Caribbean: Spatial and statistical assessments.

Spat Spatiotemporal Epidemiol. 2021-6

[7]
Diabetes and COVID-19.

Open Life Sci. 2021-3-25

[8]
COVID-19 lockdowns reduce the Black carbon and polycyclic aromatic hydrocarbons of the Asian atmosphere: source apportionment and health hazard evaluation.

Environ Dev Sustain. 2021

[9]
Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR).

Sustain Cities Soc. 2021-2

[10]
Impact of population density on Covid-19 infected and mortality rate in India.

Model Earth Syst Environ. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索