Suppr超能文献

迈向基于可解释人工智能的流行病学研究,以应对下一次潜在的大流行。

Towards Improved XAI-Based Epidemiological Research into the Next Potential Pandemic.

作者信息

Khalili Hamed, Wimmer Maria A

机构信息

Research Group E-Government, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany.

出版信息

Life (Basel). 2024 Jun 21;14(7):783. doi: 10.3390/life14070783.

Abstract

By applying AI techniques to a variety of pandemic-relevant data, artificial intelligence (AI) has substantially supported the control of the spread of the SARS-CoV-2 virus. Along with this, epidemiological machine learning studies of SARS-CoV-2 have been frequently published. While these models can be perceived as precise and policy-relevant to guide governments towards optimal containment policies, their black box nature can hamper building trust and relying confidently on the prescriptions proposed. This paper focuses on interpretable AI-based epidemiological models in the context of the recent SARS-CoV-2 pandemic. We systematically review existing studies, which jointly incorporate AI, SARS-CoV-2 epidemiology, and explainable AI approaches (XAI). First, we propose a conceptual framework by synthesizing the main methodological features of the existing AI pipelines of SARS-CoV-2. Upon the proposed conceptual framework and by analyzing the selected epidemiological studies, we reflect on current research gaps in epidemiological AI toolboxes and how to fill these gaps to generate enhanced policy support in the next potential pandemic.

摘要

通过将人工智能技术应用于各种与大流行相关的数据,人工智能(AI)为控制严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒的传播提供了有力支持。与此同时,关于SARS-CoV-2的流行病学机器学习研究也频繁发表。虽然这些模型被认为精确且与政策相关,能够指导政府制定最佳防控政策,但其黑箱性质可能会阻碍信任的建立以及对所提建议的自信依赖。本文聚焦于近期SARS-CoV-2大流行背景下基于可解释人工智能的流行病学模型。我们系统回顾了现有研究,这些研究将人工智能、SARS-CoV-2流行病学和可解释人工智能方法(XAI)结合在一起。首先,我们通过综合现有SARS-CoV-2人工智能流程的主要方法特征,提出了一个概念框架。基于所提出的概念框架并通过分析所选的流行病学研究,我们思考了流行病学人工智能工具箱当前的研究差距,以及如何填补这些差距,以便在未来可能发生的大流行中提供更强有力的政策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea0/11278356/bd6e8f7d53c8/life-14-00783-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验