Murae Mana, Shimizu Yoshimi, Yamamoto Yuichiro, Kobayashi Asuka, Houri Masumi, Inoue Tetsuya, Irie Takuya, Gemba Ryutaro, Kondo Yosuke, Nakano Yoshio, Miyazaki Satoru, Yamada Daisuke, Saitoh Akiyoshi, Ishii Isao, Onodera Taishi, Takahashi Yoshimasa, Wakita Takaji, Fukasawa Masayoshi, Noguchi Kohji
Laboratory of Molecular Target Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamasaki 2641, Noda, Chiba, 278-8510, Japan; Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, 164-8530, Japan.
Biochem Biophys Res Commun. 2022 Mar 15;597:30-36. doi: 10.1016/j.bbrc.2022.01.106. Epub 2022 Jan 29.
Viral spike proteins play important roles in the viral entry process, facilitating attachment to cellular receptors and fusion of the viral envelope with the cell membrane. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor angiotensin converting enzyme-2 (ACE2) via its receptor-binding domain (RBD). The cysteine residue at position 488, consisting of a disulfide bridge with cysteine 480 is located in an important structural loop at ACE2-binding surface of RBD, and is highly conserved among SARS-related coronaviruses. We showed that the substitution of Cys-488 with alanine impaired pseudotyped SARS-CoV-2 infection, syncytium formation, and cell-cell fusion triggered by SARS-CoV-2 spike expression. Consistently, in vitro binding of RBD and ACE2, spike-mediated cell-cell fusion, and pseudotyped viral infection of VeroE6/TMPRSS2 cells were inhibited by the thiol-reactive compounds N-acetylcysteine (NAC) and a reduced form of glutathione (GSH). Furthermore, we demonstrated that the activity of variant spikes from the SARS-CoV-2 alpha and delta strains were also suppressed by NAC and GSH. Taken together, these data indicate that Cys-488 in spike RBD is required for SARS-CoV-2 spike functions and infectivity, and could be a target of anti-SARS-CoV-2 therapeutics.
病毒刺突蛋白在病毒进入细胞的过程中发挥着重要作用,有助于病毒附着于细胞受体并使病毒包膜与细胞膜融合。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白通过其受体结合结构域(RBD)与细胞受体血管紧张素转换酶2(ACE2)结合。位于RBD的ACE2结合表面一个重要结构环中的488位半胱氨酸残基,与480位半胱氨酸形成二硫键,在与SARS相关的冠状病毒中高度保守。我们发现,将488位半胱氨酸替换为丙氨酸会损害假型SARS-CoV-2感染、合胞体形成以及由SARS-CoV-2刺突蛋白表达引发的细胞间融合。同样,巯基反应性化合物N-乙酰半胱氨酸(NAC)和还原型谷胱甘肽(GSH)抑制了RBD与ACE2的体外结合、刺突介导的细胞间融合以及VeroE6/TMPRSS2细胞的假型病毒感染。此外,我们还证明,NAC和GSH也抑制了SARS-CoV-2阿尔法和德尔塔毒株变异刺突蛋白的活性。综上所述,这些数据表明,刺突RBD中的488位半胱氨酸是SARS-CoV-2刺突蛋白功能和感染性所必需的,可能成为抗SARS-CoV-2治疗药物的靶点。