Suppr超能文献

TW-GAN:用于视网膜动脉/静脉分类的拓扑和宽度感知 GAN。

TW-GAN: Topology and width aware GAN for retinal artery/vein classification.

机构信息

Tencent Jarvis Lab, Tencent, Shenzhen, China; School of Computer Science & Software Engineering, Shenzhen University, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.

Tencent Jarvis Lab, Tencent, Shenzhen, China.

出版信息

Med Image Anal. 2022 Apr;77:102340. doi: 10.1016/j.media.2021.102340. Epub 2021 Dec 23.

Abstract

Automatic artery/vein (A/V) classification, as the basic prerequisite for the quantitative analysis of retinal vascular network, has been actively investigated in recent years using both conventional and deep learning based methods. The topological connection relationship and vessel width information, which have been proved effective in improving the A/V classification performance for the conventional methods, however, have not yet been exploited by the deep learning based methods. In this paper, we propose a novel Topology and Width Aware Generative Adversarial Network (named as TW-GAN), which, for the first time, integrates the topology connectivity and vessel width information into the deep learning framework for A/V classification. To improve the topology connectivity, a topology-aware module is proposed, which contains a topology ranking discriminator based on ordinal classification to rank the topological connectivity level of the ground-truth mask, the generated A/V mask and the intentionally shuffled mask. In addition, a topology preserving triplet loss is also proposed to extract the high-level topological features and further to narrow the feature distance between the predicted A/V mask and the ground-truth mask. Moreover, to enhance the model's perception of vessel width, a width-aware module is proposed to predict the width maps for the dilated/non-dilated ground-truth masks. Extensive empirical experiments demonstrate that the proposed framework effectively increases the topological connectivity of the segmented A/V masks and achieves state-of-the-art A/V classification performance on the publicly available AV-DRIVE and HRF datasets. Source code and data annotations are available at https://github.com/o0t1ng0o/TW-GAN.

摘要

自动动脉/静脉 (A/V) 分类作为视网膜血管网络定量分析的基本前提,近年来一直受到传统方法和基于深度学习方法的积极研究。拓扑连接关系和血管宽度信息已被证明对传统方法的 A/V 分类性能的提升有效,然而,基于深度学习的方法尚未利用这些信息。在本文中,我们提出了一种新颖的拓扑和宽度感知生成对抗网络 (命名为 TW-GAN),它首次将拓扑连接和血管宽度信息集成到用于 A/V 分类的深度学习框架中。为了提高拓扑连接,我们提出了一个拓扑感知模块,其中包含一个基于序贯分类的拓扑排序鉴别器,用于对真实掩模、生成的 A/V 掩模和故意打乱的掩模的拓扑连接水平进行排序。此外,还提出了一种拓扑保持三元损失函数,用于提取高级拓扑特征,并进一步缩小预测的 A/V 掩模和真实掩模之间的特征距离。此外,为了增强模型对血管宽度的感知能力,我们提出了一个宽度感知模块,用于预测扩张/非扩张真实掩模的宽度图。广泛的实验结果表明,所提出的框架有效地提高了分割的 A/V 掩模的拓扑连接,并在公开的 AV-DRIVE 和 HRF 数据集上实现了最先进的 A/V 分类性能。源代码和数据注释可在 https://github.com/o0t1ng0o/TW-GAN 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验