Suppr超能文献

基于拓扑感知生成对抗网络的视网膜图像全自动动静脉分割。

Fully Automatic Arteriovenous Segmentation in Retinal Images via Topology-Aware Generative Adversarial Networks.

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.

Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.

出版信息

Interdiscip Sci. 2020 Sep;12(3):323-334. doi: 10.1007/s12539-020-00385-5. Epub 2020 Jul 28.

Abstract

Retinal image contains rich information on the blood vessel and is highly related to vascular diseases. Fully automatic and accurate identification of arteries and veins from the complex background of retinal images is essential for analyzing eye-relevant diseases, and monitoring progressive eye diseases. However, popular methods, including deep learning-based models, performed unsatisfactorily in preserving the connectivity of both the arteries and veins. The results were shown to be disconnected or overlapped by the twos and thus manual calibration was needed to refine the results. To tackle the problem, this paper proposes a topological structure-constrained generative adversarial network (topGAN) to automatically identify and differentiate the arteries and veins from retinal images. The introduced topological structure term can automatically delineate the topological structure properties of retinal blood vessels and greatly improves the vascular connectivity of the entire arteriovenous classification results. We train and evaluate our model on both the AV-DRIVE public available dataset and the CVDG home-owned dataset, which consists of 40 images and 3119 images, respectively. Experiments demonstrate that integrating topological structure constraints can significantly improve the performance of arteriovenous classification. Our method achieves excellent performance with an accuracy of 94.3% on the AV-DRIVE dataset and 93.6% on the CVDG dataset.

摘要

视网膜图像包含丰富的血管信息,与血管疾病高度相关。从视网膜图像的复杂背景中自动、准确地识别动脉和静脉,对于分析与眼睛相关的疾病和监测进行性眼病至关重要。然而,包括基于深度学习的模型在内的流行方法在保持动脉和静脉的连通性方面表现不佳。结果显示,动脉和静脉是断开的或重叠的,因此需要手动校准来细化结果。为了解决这个问题,本文提出了一种拓扑结构约束生成对抗网络(topGAN),以自动识别和区分视网膜图像中的动脉和静脉。引入的拓扑结构项可以自动描绘视网膜血管的拓扑结构特性,极大地提高了整个动静脉分类结果的血管连通性。我们在 AV-DRIVE 公共可用数据集和 CVDG 自有数据集上对我们的模型进行了训练和评估,分别包含 40 张图像和 3119 张图像。实验表明,集成拓扑结构约束可以显著提高动静脉分类的性能。我们的方法在 AV-DRIVE 数据集上的准确率为 94.3%,在 CVDG 数据集上的准确率为 93.6%,表现出色。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验