Department of Diagnostic Radiology, Karolinska University Hospital, 171 76, Stockholm, Sweden.
Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177, Stockholm, Sweden.
Emerg Radiol. 2022 Apr;29(2):339-352. doi: 10.1007/s10140-021-02012-2. Epub 2022 Jan 5.
To compare the image quality between a deep learning-based image reconstruction algorithm (DLIR) and an adaptive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT.
Head CT scans from 94 consecutive trauma patients were included. Images were reconstructed with ASiR-V 50% and the DLIR strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The image quality was assessed quantitatively and qualitatively and compared between the different reconstruction algorithms. Inter-reader agreement was assessed by weighted kappa.
DLIR-M and DLIR-H demonstrated lower image noise (p < 0.001 for all pairwise comparisons), higher SNR of up to 82.9% (p < 0.001), and higher CNR of up to 53.3% (p < 0.001) compared to ASiR-V. DLIR-H outperformed other DLIR strengths (p ranging from < 0.001 to 0.016). DLIR-M outperformed DLIR-L (p < 0.001) and ASiR-V (p < 0.001). The distribution of reader scores for DLIR-M and DLIR-H shifted towards higher scores compared to DLIR-L and ASiR-V. There was a tendency towards higher scores with increasing DLIR strengths. There were fewer non-diagnostic CT series for DLIR-M and DLIR-H compared to ASiR-V and DLIR-L. No images were graded as non-diagnostic for DLIR-H regarding intracranial hemorrhage. The inter-reader agreement was fair-good between the second most and the less experienced reader, poor-moderate between the most and the less experienced reader, and poor-fair between the most and the second most experienced reader.
The image quality of trauma head CT series reconstructed with DLIR outperformed those reconstructed with ASiR-V. In particular, DLIR-M and DLIR-H demonstrated significantly improved image quality and fewer non-diagnostic images. The improvement in qualitative image quality was greater for the second most and the less experienced readers compared to the most experienced reader.
比较基于深度学习的图像重建算法(DLIR)和自适应统计迭代重建算法(ASiR-V)在非对比性颅脑 CT 中的图像质量。
纳入 94 例连续创伤性颅脑 CT 扫描。图像采用 ASiR-V 50%和 DLIR 强度:低(DLIR-L)、中(DLIR-M)和高(DLIR-H)重建。对不同重建算法的图像质量进行定量和定性评估,并进行比较。采用加权 Kappa 评估读者间的一致性。
与 ASiR-V 相比,DLIR-M 和 DLIR-H 的图像噪声更低(所有两两比较的 p 值均<0.001),SNR 最高可达 82.9%(p<0.001),CNR 最高可达 53.3%(p<0.001)。DLIR-H 优于其他 DLIR 强度(p 值范围从<0.001 到 0.016)。DLIR-M 优于 DLIR-L(p<0.001)和 ASiR-V(p<0.001)。与 DLIR-L 和 ASiR-V 相比,DLIR-M 和 DLIR-H 的读者评分分布向更高的评分转移。随着 DLIR 强度的增加,评分有升高的趋势。与 ASiR-V 和 DLIR-L 相比,DLIR-M 和 DLIR-H 的非诊断性 CT 系列较少。DLIR-H 对颅内出血的 CT 图像没有出现非诊断性评分。第二和较不经验丰富的读者之间的观察者间一致性为中到良好,最有经验和较不经验丰富的读者之间为差到中等,最有经验和第二有经验的读者之间为差到中到良好。
与 ASiR-V 重建的颅脑 CT 系列相比,基于深度学习的图像重建算法的图像质量更好。特别是,DLIR-M 和 DLIR-H 显著提高了图像质量,且较少出现非诊断性图像。与最有经验的读者相比,第二和较不经验丰富的读者的定性图像质量改善更大。