Suppr超能文献

深度学习与迭代重建算法在创伤性头部 CT 中的应用比较。

Deep learning versus iterative image reconstruction algorithm for head CT in trauma.

机构信息

Department of Diagnostic Radiology, Karolinska University Hospital, 171 76, Stockholm, Sweden.

Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177, Stockholm, Sweden.

出版信息

Emerg Radiol. 2022 Apr;29(2):339-352. doi: 10.1007/s10140-021-02012-2. Epub 2022 Jan 5.

Abstract

PURPOSE

To compare the image quality between a deep learning-based image reconstruction algorithm (DLIR) and an adaptive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT.

METHODS

Head CT scans from 94 consecutive trauma patients were included. Images were reconstructed with ASiR-V 50% and the DLIR strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The image quality was assessed quantitatively and qualitatively and compared between the different reconstruction algorithms. Inter-reader agreement was assessed by weighted kappa.

RESULTS

DLIR-M and DLIR-H demonstrated lower image noise (p < 0.001 for all pairwise comparisons), higher SNR of up to 82.9% (p < 0.001), and higher CNR of up to 53.3% (p < 0.001) compared to ASiR-V. DLIR-H outperformed other DLIR strengths (p ranging from < 0.001 to 0.016). DLIR-M outperformed DLIR-L (p < 0.001) and ASiR-V (p < 0.001). The distribution of reader scores for DLIR-M and DLIR-H shifted towards higher scores compared to DLIR-L and ASiR-V. There was a tendency towards higher scores with increasing DLIR strengths. There were fewer non-diagnostic CT series for DLIR-M and DLIR-H compared to ASiR-V and DLIR-L. No images were graded as non-diagnostic for DLIR-H regarding intracranial hemorrhage. The inter-reader agreement was fair-good between the second most and the less experienced reader, poor-moderate between the most and the less experienced reader, and poor-fair between the most and the second most experienced reader.

CONCLUSION

The image quality of trauma head CT series reconstructed with DLIR outperformed those reconstructed with ASiR-V. In particular, DLIR-M and DLIR-H demonstrated significantly improved image quality and fewer non-diagnostic images. The improvement in qualitative image quality was greater for the second most and the less experienced readers compared to the most experienced reader.

摘要

目的

比较基于深度学习的图像重建算法(DLIR)和自适应统计迭代重建算法(ASiR-V)在非对比性颅脑 CT 中的图像质量。

方法

纳入 94 例连续创伤性颅脑 CT 扫描。图像采用 ASiR-V 50%和 DLIR 强度:低(DLIR-L)、中(DLIR-M)和高(DLIR-H)重建。对不同重建算法的图像质量进行定量和定性评估,并进行比较。采用加权 Kappa 评估读者间的一致性。

结果

与 ASiR-V 相比,DLIR-M 和 DLIR-H 的图像噪声更低(所有两两比较的 p 值均<0.001),SNR 最高可达 82.9%(p<0.001),CNR 最高可达 53.3%(p<0.001)。DLIR-H 优于其他 DLIR 强度(p 值范围从<0.001 到 0.016)。DLIR-M 优于 DLIR-L(p<0.001)和 ASiR-V(p<0.001)。与 DLIR-L 和 ASiR-V 相比,DLIR-M 和 DLIR-H 的读者评分分布向更高的评分转移。随着 DLIR 强度的增加,评分有升高的趋势。与 ASiR-V 和 DLIR-L 相比,DLIR-M 和 DLIR-H 的非诊断性 CT 系列较少。DLIR-H 对颅内出血的 CT 图像没有出现非诊断性评分。第二和较不经验丰富的读者之间的观察者间一致性为中到良好,最有经验和较不经验丰富的读者之间为差到中等,最有经验和第二有经验的读者之间为差到中到良好。

结论

与 ASiR-V 重建的颅脑 CT 系列相比,基于深度学习的图像重建算法的图像质量更好。特别是,DLIR-M 和 DLIR-H 显著提高了图像质量,且较少出现非诊断性图像。与最有经验的读者相比,第二和较不经验丰富的读者的定性图像质量改善更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验