Suppr超能文献

用于疫情决策支持的传染病传播空间细分

Spatial Tessellation of Infectious Disease Spread for Epidemic Decision Support.

作者信息

Liu Runsang, Yang Hui

机构信息

Complex Systems Monitoring, Modeling and Control labThe Pennsylvania State University University Park PA 16802 USA.

出版信息

IEEE Robot Autom Lett. 2021 Dec 1;7(1):626-633. doi: 10.1109/LRA.2021.3131699. eCollection 2022 Jan.

Abstract

Infectious diseases such as COVID-19 have severe impacts on both economy and public health in the US and the world. Due to the heterogeneity of virus spread, there are spatial variations in the demand for medical resources such as personal protective equipment (PPE), testing kits, and vaccines. The availability of such medical resources is critical to effective epidemic control. Although these resources can be readily transported to designated areas for fighting an epidemic, the demand is increasing and varying in space that places significant stress on the supply and allocation of medical resources. However, little has been done on the tessellation of infection distributions for resource management. In this letter, we develop new tessellation algorithms for decision support in epidemic resource allocation and management. The objective is to estimate resource locations and coverage based on the spatial analysis of heterogeneous infection distribution. First, spatial tessellation centroids are initialized through either greedy or cluster-centric approaches. Next, the locations of tessellation centroids are calibrated through a gradient learning algorithm. Lastly, the spread tessellation is computed to provide an estimation of resource coverages under the heterogeneous infection distribution. The proposed methodology is evaluated and validated using a COVID-19 case study of infection data in Pennsylvania. Experimental results show the proposed methodology effectively tessellates the spread of infectious diseases. The new spread tessellation algorithms are shown to have strong potentials for epidemic decision support in infection modelling and resource allocation.

摘要

像新冠疫情这样的传染病对美国乃至全球的经济和公共卫生都造成了严重影响。由于病毒传播的异质性,个人防护装备(PPE)、检测试剂盒和疫苗等医疗资源的需求存在空间差异。这些医疗资源的可获取性对于有效控制疫情至关重要。尽管这些资源可以很容易地运输到指定的抗疫地区,但需求在不断增加且存在空间差异,这给医疗资源的供应和分配带来了巨大压力。然而,在用于资源管理的感染分布镶嵌方面,相关研究做得很少。在这封信中,我们开发了新的镶嵌算法,用于疫情资源分配和管理中的决策支持。目标是基于对异质感染分布的空间分析来估计资源位置和覆盖范围。首先,通过贪婪或基于聚类的方法初始化空间镶嵌质心。接下来,通过梯度学习算法校准镶嵌质心的位置。最后,计算传播镶嵌以估计异质感染分布下的资源覆盖范围。使用宾夕法尼亚州新冠感染数据的案例研究对所提出的方法进行了评估和验证。实验结果表明,所提出的方法有效地对传染病传播进行了镶嵌。新的传播镶嵌算法在感染建模和资源分配的疫情决策支持方面显示出强大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e5/8843048/fd5f0a8bd471/yang1-3131699.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验