Nagaraj Madhu, Najarzadeh Zahra, Pansieri Jonathan, Biverstål Henrik, Musteikyte Greta, Smirnovas Vytautas, Matthews Steve, Emanuelsson Cecilia, Johansson Janne, Buxbaum Joel N, Morozova-Roche Ludmilla, Otzen Daniel E
Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14 DK - 8000 Aarhus C Denmark
Department of Medical Biochemistry and Biophysics, Umeå University 90187 Umeå Sweden.
Chem Sci. 2021 Dec 13;13(2):536-553. doi: 10.1039/d1sc05790a. eCollection 2022 Jan 5.
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, CsgA () and FapC (), is carefully regulated. However, it is unclear whether functional aggregation is inhibited by chaperones targeting pathological misfolding and if so by what mechanism. Here we analyze how four entirely different human chaperones or protein modulators (transthyretin, S100A9, Bri2 BRICHOS and DNAJB6) and bacterial CsgC affect CsgA and FapC fibrillation. CsgA is more susceptible to inhibition than FapC and the chaperones vary considerably in the efficiency of their inhibition. However, mechanistic analysis reveals that all predominantly target primary nucleation rather than elongation or secondary nucleation, while stoichiometric considerations suggest that DNAJB6 and CsgC target nuclei rather than monomers. Inhibition efficiency broadly scales with the chaperones' affinity for monomeric CsgA and FapC. The chaperones tend to target the most aggregation-prone regions of CsgA, but do not display such tendencies towards the more complex FapC sequence. Importantly, the most efficient inhibitors (Bri2 BRICHOS and DNAJB6) significantly reduce bacterial biofilm formation. This commonality of chaperone action may reflect the simplicity of functional amyloid formation, driven largely by primary nucleation, as well as the ability of non-bacterial chaperones to deploy their proteostatic capacities across biological kingdoms.
与神经退行性疾病中的错误折叠不同,参与细菌生物膜形成的功能性淀粉样蛋白CsgA()和FapC()的聚集受到严格调控。然而,尚不清楚功能性聚集是否受到针对病理性错误折叠的伴侣蛋白的抑制,如果是,其机制是什么。在这里,我们分析了四种完全不同的人类伴侣蛋白或蛋白质调节剂(转甲状腺素蛋白、S100A9、Bri2 BRICHOS和DNAJB6)以及细菌CsgC如何影响CsgA和FapC的纤维化。CsgA比FapC更容易受到抑制,并且这些伴侣蛋白在抑制效率上有很大差异。然而,机制分析表明,它们主要针对初级成核而非延伸或次级成核,而化学计量学考虑表明DNAJB6和CsgC靶向核而非单体。抑制效率大致与伴侣蛋白对单体CsgA和FapC的亲和力成比例。这些伴侣蛋白倾向于靶向CsgA最容易聚集的区域,但对更复杂的FapC序列没有这种倾向。重要的是,最有效的抑制剂(Bri2 BRICHOS和DNAJB6)显著减少细菌生物膜的形成。伴侣蛋白作用的这种共性可能反映了功能性淀粉样蛋白形成的简单性,其主要由初级成核驱动,以及非细菌伴侣蛋白在不同生物界发挥其蛋白质稳态能力的能力。