Suppr超能文献

预测的环区促进聚集:功能性淀粉样 FapC 中淀粉样结构域的研究。

Predicted Loop Regions Promote Aggregation: A Study of Amyloidogenic Domains in the Functional Amyloid FapC.

机构信息

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK-8000, Denmark.

Centre for Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, Hannover, 30167, Germany; Department of Physics, Faculty of Science, Suez University, Suez, 43533, Egypt.

出版信息

J Mol Biol. 2020 Mar 27;432(7):2232-2252. doi: 10.1016/j.jmb.2020.01.044. Epub 2020 Feb 19.

Abstract

Protein fibrillation is traditionally associated with misfolding, loss of functional phenotype, and gain of toxicity in neurodegenerative diseases. However, many organisms exploit fibrils in the form of functional amyloids (FA), as seen in bacteria, such as E. coli, Salmonella, Bacillus, and Pseudomonas. Here, we provide structural information and mechanistic data for fibrillation of the smallest amyloidogenic truncation unit along with the full-length version (FL) of the major amyloid protein FapC from Pseudomonas, predicted to consist of three β-hairpin-forming imperfect repeats separated by disordered regions. Using a series of truncation mutants, we establish that the putative loops (linkers) increase the rate of aggregation. The minimal aggregation unit consisting of a single repeat with flanking disordered regions (R3C) aggregates in a pathway dominated by secondary nucleation, in contrast to the primary nucleation favored by full-length (FL) FapC. SAXS on FapC FL, R3C, and remaining truncation constructs resolves two major coexisting species in the fibrillation process, namely pre-fibrillar loosely aggregated monomers, and cylindrical, elliptical cross-section fibrils. Solid-state NMR spectra identified rigid parts of the FapC fibril. We assigned Cα-Cβ chemical shifts, indicative of a predominant β-sheet topology with some α-helix or loop chemical shifts. Our work emphasizes the complex nature of FapC fibrillation. In addition, we are able to deduce the importance of non-repeat regions (i.e., predicted loops), which enhance the amyloid protein aggregation and their influence on the polymorphism of the fibril architecture.

摘要

蛋白质纤丝化传统上与错误折叠、功能表型丧失以及神经退行性疾病中获得毒性有关。然而,许多生物体以功能性淀粉样纤维(FA)的形式利用纤丝,如细菌中的大肠杆菌、沙门氏菌、芽孢杆菌和假单胞菌。在这里,我们提供了来自假单胞菌的主要淀粉样蛋白 FapC 的最小淀粉样片段和全长版本(FL)的纤丝化结构信息和机制数据,该蛋白被预测由三个β-发夹形成的不完美重复组成,由无序区域分隔。使用一系列截断突变体,我们确定了假定的环(接头)会增加聚集的速度。由单个重复及其侧翼无序区域组成的最小聚集单元(R3C)在聚合过程中通过二级成核主导,与全长(FL)FapC 优先的一级成核形成对比。对 FapC FL、R3C 和剩余截断构建体的 SAXS 解析表明,在纤丝化过程中有两种主要共存的物种,即预纤丝化的松散聚集单体和圆柱形、椭圆形截面的纤丝。固态 NMR 谱确定了 FapC 纤丝的刚性部分。我们对 Cα-Cβ化学位移进行了分配,表明其拓扑结构主要为β-折叠,带有一些α-螺旋或环的化学位移。我们的工作强调了 FapC 纤丝化的复杂性质。此外,我们能够推断出非重复区域(即预测的环)的重要性,这些区域增强了淀粉样蛋白的聚集及其对纤丝结构多态性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验