文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强三阴性乳腺癌免疫治疗的含聚肌苷酸-聚胞苷酸的光控电荷反转纳米颗粒。

Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer.

作者信息

Fang Lei, Zhao Zitong, Wang Jue, Xiao Ping, Sun Xiangshi, Ding Yaping, Zhang Pengcheng, Wang Dangge, Li Yaping

机构信息

Collage of Sciences, Shanghai University, Shanghai 200444, China.

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

出版信息

Acta Pharm Sin B. 2022 Jan;12(1):353-363. doi: 10.1016/j.apsb.2021.06.006. Epub 2021 Jun 15.


DOI:10.1016/j.apsb.2021.06.006
PMID:35127391
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8800000/
Abstract

Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.

摘要

核酸药物在癌症免疫治疗中具有很高的应用价值,治疗效果显著,但将这些药物靶向递送至疾病病灶仍然具有挑战性。阳离子聚合物纳米颗粒为核酸药物的高效递送铺平了道路,并在肿瘤微环境(TME)中实现了刺激响应性解离。然而,个体之间的肿瘤微环境高度异质性,且大多数纳米载体对负载的核酸药物释放缺乏主动控制,这肯定会降低治疗效果。在此,我们开发了一种光控电荷反转纳米颗粒(LCCN),通过增强光动力免疫疗法,实现对聚肌苷酸-聚胞苷酸[Poly(I:C)]的控释,以治疗三阴性乳腺癌(TNBC)。纳米颗粒保持适当的正电荷以稳定负载Poly(I:C),而在近红外光照射后迅速反转成负电荷以释放Poly(I:C)。LCCN-Poly(I:C)纳米颗粒对4T1肿瘤细胞引发有效的光毒性和免疫原性细胞死亡,增强抗肿瘤免疫反应,并抑制小鼠体内原发和远隔4T1肿瘤的生长。该方法为各种基于核酸的免疫调节剂的控释提供了一种有前景的策略,可能会提高光动力免疫疗法治疗TNBC的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/361abac6063c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/64a514f4a487/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/e2a589f8b465/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/3e8a35a68d41/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/199c4b70c286/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/e8c0d1d24c65/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/361abac6063c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/64a514f4a487/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/e2a589f8b465/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/3e8a35a68d41/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/199c4b70c286/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/e8c0d1d24c65/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0963/8800000/361abac6063c/gr4.jpg

相似文献

[1]
Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer.

Acta Pharm Sin B. 2022-1

[2]
Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer.

Acta Biomater. 2020-3-15

[3]
Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property.

Colloids Surf B Biointerfaces. 2022-1

[4]
Immune/Hypoxic Tumor Microenvironment Regulation-Enhanced Photodynamic Treatment Realized by pH-Responsive Phase Transition-Targeting Nanobubbles.

ACS Appl Mater Interfaces. 2021-7-21

[5]
Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases.

Biomaterials. 2018-5-31

[6]
Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer.

Acta Biomater. 2021-5

[7]
Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer.

Mater Today (Kidlington). 2021-11

[8]
Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.

Acta Biomater. 2017-11-10

[9]
Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer.

Adv Healthc Mater. 2021-11

[10]
Red blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I : C) for enhanced tumoral photodynamic-immunotherapy.

Natl Sci Rev. 2021-3-3

引用本文的文献

[1]
Biomimetic intelligent nanoplatform with cascade amplification effect for tumor synergy therapy.

Sci Rep. 2024-12-28

[2]
Co-delivery of Siape1 and Melatonin by I-loaded PSMA-targeted Nanoparticles for the Treatment of Prostate Cancer.

Recent Pat Anticancer Drug Discov. 2024

[3]
Targeting cytokine and chemokine signaling pathways for cancer therapy.

Signal Transduct Target Ther. 2024-7-22

[4]
Dual depletion of myeloid-derived suppressor cells and tumor cells with self-assembled gemcitabine-celecoxib nano-twin drug for cancer chemoimmunotherapy.

J Nanobiotechnology. 2024-6-8

[5]
Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer.

ACS Biomater Sci Eng. 2024-6-10

[6]
Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine.

Eur J Pharm Biopharm. 2024-4

[7]
Designing Nanomedicines for Breast Cancer Therapy.

Biomolecules. 2023-10-22

[8]
Phototriggered structures: Latest advances in biomedical applications.

Acta Pharm Sin B. 2023-7

[9]
Light-responsive nanomedicine for cancer immunotherapy.

Acta Pharm Sin B. 2023-6

[10]
Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors.

Biomaterials. 2023-9

本文引用的文献

[1]
Small interfering RNA for cancer treatment: overcoming hurdles in delivery.

Acta Pharm Sin B. 2020-11

[2]
The progress and perspective of nanoparticle-enabled tumor metastasis treatment.

Acta Pharm Sin B. 2020-11

[3]
The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile.

Nanotoxicology. 2020-9-11

[4]
Delivery strategies for macromolecular drugs in cancer therapy.

Acta Pharm Sin B. 2020-6

[5]
Engineering autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor surgical bed.

Sci Adv. 2020-6

[6]
Triple-negative breast cancer molecular subtyping and treatment progress.

Breast Cancer Res. 2020-6-9

[7]
Expanding the Role for Immunotherapy in Triple-Negative Breast Cancer.

Cancer Cell. 2020-5-11

[8]
Nanoparticle depots for controlled and sustained gene delivery.

J Control Release. 2020-6-10

[9]
Pembrolizumab for triple-negative breast cancer.

Lancet Oncol. 2020-4

[10]
Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor.

Acta Pharm Sin B. 2020-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索